Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black holes and the dark sector explained by quantum gravity

06.03.2015

Ask any theoretical physicist on what are the most profound mysteries in physics and you will be surprised if she mentions anything other than Quantum Gravity and the Dark Sector.

Questions such as how do we reconcile GR and Quantum Theory? What is Dark Matter? And what is Dark Energy? These are what keep most physicists awake late at night. Suggested solutions to these problems are manifold but all fall short of providing a satisfactory explanation.


This is a composite image of the Bullet Group showing galaxies, hot gas (shown in pink) and dark matter (indicated in blue).

Credit: ESA / XMM-Newton / F. Gastaldello (INAF/IASF, Milano, Italy) / CFHTLS.

The situation is set to change however as a new theory authored by Lic. Stuart Marongwe who holds a licentiate degree in physics and electronics from Jose Varona University in Havana, Cuba now stationed at the physics Department of McConnell College in Botswana, provides a self-consistent theory of Quantum Gravity which explains the Dark sector and is in agreement with observations.

The theory is known as Nexus in the sense that it provides a link between Quantum Theory and GR. This link manifests in the form of the Nexus graviton- a composite spin 2 particle of space-time which emerges naturally from the unification process.

One remarkable feature of the Nexus graviton which distinguishes it from the graviton hypothesized in the Standard Model is that it is not a messenger particle but rather it induces a constant rotational motion on any test particle embedded within its confines.

Moreover the Nexus graviton can also be considered as a globule of vacuum energy which can merge and de-merge with others in a process that resembles cytokineses in cell biology. The Nexus graviton is Dark Matter and constitutes space-time.

The emission of a graviton of least energy by a high energy graviton results in the expansion of the high energy graviton as it assumes a lower energy state. This process manifests as Dark Energy and takes place throughout space-time as the theory explains.

This paper is significant in the sense that it sheds some light on some of the most perplexing questions in physics which include a quantum description of Black Holes without singularities inherent in classical GR.The solutions provided in this paper will certainly open doors to new physics.

###

The paper can be found in International Journal of Geometric Methods in Modern Physics (IJGMMP).

Philly Lim | EurekAlert!

Further reports about: Havana Holes QUANTUM cell biology dark gravity quantum gravity rotational motion

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>