Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Black Hole Research Lands NASA EPSCoR Grant

Researchers from Arkansas land $1.4 million grant to pursue study of super-massive black holes thought to reside at the center of all galaxies.

Dr. Marc Seigar, a UALR astrophysics professor and three colleagues from the University of Arkansas at Fayetteville, have received a $1.4 million grant from the Arkansas NASA EPSCoR Office to further their study of mysterious super- massive black holes thought to reside at the centers of nearly all galaxies.

Seigar and his co-researchers – Professors Daniel Kennefick, Julia Kennefick, and Claud Lacy, all of the University of Arkansas at Fayetteville – formed a new collaboration in late 2007 to study these black holes and the role they play in galactic evolution. In June of this year, Seigar presented the groups' conclusions at the American Astronomical Society meeting in St. Louis that created a worldwide buzz among science journalists.

Operating as the Arkansas Galaxy Evolution Survey – AGES, the scientific collaborative has received a total of $1.4 million, with the Arkansas NASA EPSCoR Office funding half of that amount and the two universities providing the remainder of the funds.

Seigar at UALR will receive approximately $400,000 and the three other Fayetteville scientists will receive the remainder of the funds. Daniel Kennefick will be the grant's principal investigator.

The grant will allow the Arkansas scientists to develop a census of black holes throughout the universe as a means of understanding how galaxies and the universe itself evolved with time.

In June of this year, Seigar presented a paper to the American Astronomical Society in St. Louis outlining AGES' method of estimating the masses of super-massive black holes in galaxies that are far distant. The team's work attracted the interest of science journalists as well as National Geographic, USA Today, Science News, and BBC's Sky at Night among others.

Seigar and his research team have concluded that the larger the black hole at the center of a spiral galaxy, the tighter the galaxy's arms wrap around itself. If correct, the simple relationship would give researchers an easy way to learn about black holes.

The research team will employ new techniques to estimate the masses of the super-massive black holes residing in large numbers of galaxies by exploiting a relation that they discovered between a spiral arm structure and the mass of the super-massive black hole in the center of spiral galaxies.

The technique will permit them to make use of the extensive archive of deep images provided by large telescopes, such as NASA's Hubble Space Telescope, in estimating the masses of super-massive black holes in distant galaxies.

In addition, the team will use spectroscopic techniques to estimate the mass of super-massive black holes in quasars, and other "active" galaxies, in which the super-massive black hole is surrounded by matter swirling into it.

They will also use infrared and X-ray techniques to look for evidence of binary super-massive black holes in galaxies where the birth of large numbers of hot bright stars indicates a fairly recent galactic merger.

"Such a merger seems likely to give birth to a binary super-massive black hole system at the heart of the merged galaxy, and such systems could ultimately be very strong sources of gravitational waves detectable by the proposed NASA mission to fly a gravitational wave detector in space, known as LISA," Kennefick said.

The AGES collaboration has discovered four candidate galaxies that may contain super-massive black holes binaries.

The grant they have been awarded will pay for graduate and undergraduate students at both Universities to participate in this research. In addition it will bring two postdoctoral researchers to Arkansas to work on this survey, one to UALR and the other to UA Fayetteville.

Joan I. Duffy | Newswise Science News
Further information:

More articles from Physics and Astronomy:

nachricht OU-led team discovers rare, newborn tri-star system using ALMA
27.10.2016 | University of Oklahoma

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>