Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Black Hole Research Lands NASA EPSCoR Grant

27.08.2008
Researchers from Arkansas land $1.4 million grant to pursue study of super-massive black holes thought to reside at the center of all galaxies.

Dr. Marc Seigar, a UALR astrophysics professor and three colleagues from the University of Arkansas at Fayetteville, have received a $1.4 million grant from the Arkansas NASA EPSCoR Office to further their study of mysterious super- massive black holes thought to reside at the centers of nearly all galaxies.

Seigar and his co-researchers – Professors Daniel Kennefick, Julia Kennefick, and Claud Lacy, all of the University of Arkansas at Fayetteville – formed a new collaboration in late 2007 to study these black holes and the role they play in galactic evolution. In June of this year, Seigar presented the groups' conclusions at the American Astronomical Society meeting in St. Louis that created a worldwide buzz among science journalists.

Operating as the Arkansas Galaxy Evolution Survey – AGES, the scientific collaborative has received a total of $1.4 million, with the Arkansas NASA EPSCoR Office funding half of that amount and the two universities providing the remainder of the funds.

Seigar at UALR will receive approximately $400,000 and the three other Fayetteville scientists will receive the remainder of the funds. Daniel Kennefick will be the grant's principal investigator.

The grant will allow the Arkansas scientists to develop a census of black holes throughout the universe as a means of understanding how galaxies and the universe itself evolved with time.

In June of this year, Seigar presented a paper to the American Astronomical Society in St. Louis outlining AGES' method of estimating the masses of super-massive black holes in galaxies that are far distant. The team's work attracted the interest of science journalists as well as National Geographic, USA Today, Science News, and BBC's Sky at Night among others.

Seigar and his research team have concluded that the larger the black hole at the center of a spiral galaxy, the tighter the galaxy's arms wrap around itself. If correct, the simple relationship would give researchers an easy way to learn about black holes.

The research team will employ new techniques to estimate the masses of the super-massive black holes residing in large numbers of galaxies by exploiting a relation that they discovered between a spiral arm structure and the mass of the super-massive black hole in the center of spiral galaxies.

The technique will permit them to make use of the extensive archive of deep images provided by large telescopes, such as NASA's Hubble Space Telescope, in estimating the masses of super-massive black holes in distant galaxies.

In addition, the team will use spectroscopic techniques to estimate the mass of super-massive black holes in quasars, and other "active" galaxies, in which the super-massive black hole is surrounded by matter swirling into it.

They will also use infrared and X-ray techniques to look for evidence of binary super-massive black holes in galaxies where the birth of large numbers of hot bright stars indicates a fairly recent galactic merger.

"Such a merger seems likely to give birth to a binary super-massive black hole system at the heart of the merged galaxy, and such systems could ultimately be very strong sources of gravitational waves detectable by the proposed NASA mission to fly a gravitational wave detector in space, known as LISA," Kennefick said.

The AGES collaboration has discovered four candidate galaxies that may contain super-massive black holes binaries.

The grant they have been awarded will pay for graduate and undergraduate students at both Universities to participate in this research. In addition it will bring two postdoctoral researchers to Arkansas to work on this survey, one to UALR and the other to UA Fayetteville.

Joan I. Duffy | Newswise Science News
Further information:
http://www.ualr.edu/

More articles from Physics and Astronomy:

nachricht Black hole spin cranks-up radio volume
15.01.2018 | National Institutes of Natural Sciences

nachricht The universe up close
15.01.2018 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>