Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When the Black Hole Was Born

27.12.2010
TAU astronomers identify the epoch of the first fast growth of black holes

Most galaxies in the universe, including our own Milky Way, harbor super-massive black holes varying in mass from about one million to about 10 billion times the size of our sun.

To find them, astronomers look for the enormous amount of radiation emitted by gas which falls into such objects during the times that the black holes are "active," i.e., accreting matter. This gas "infall" into massive black holes is believed to be the means by which black holes grow.

Now a team of astronomers from Tel Aviv University, including Prof. Hagai Hetzer and his research student Benny Trakhtenbrot, have determined that the era of first fast growth of the most massive black holes occurred when the universe was only about 1.2 billion years old — not two to four billion years old, as was previously believed — and they're growing at a very fast rate.

The results will be reported in a new paper soon to appear in Astrophysical Journal.

The oldest are growing the fastest

The new research is based on observations with some of the largest ground-based telescopes in the world: "Gemini North" on top of Mauna Kea in Hawaii, and the "Very Large Telescope Array" on Cerro Paranal in Chile. The data obtained with the advanced instrumentation on these telescopes show that the black holes that were active when the universe was 1.2 billion years old are about ten times smaller than the most massive black holes that are seen at later times. However, they are growing much faster. The measured rate of growth allowed the researchers to estimate what happened to these objects at much earlier as well as much later times.

The team found that the very first black holes, those that started the entire growth process when the universe was only several hundred million years old, had masses of only 100-1000 times the mass of the sun. Such black holes may be related to the very first stars in the universe. They also found that the subsequent growth period of the observed sources, after the first 1.2 billion years, lasted only 100-200 million years.

The team found that the very first black holes — those that started growing when the universe was only several hundred million years old — had masses of only 100-1000 times the mass of the sun. Such black holes may be related to the very first stars in the universe. They also found that the subsequent growth period of these black holes, after the first 1.2 billion years, lasted only 100-200 million years.

The new study is the culmination of a seven year-long project at Tel Aviv University designed to follow the evolution of the most massive black holes and compare them with the evolution of the galaxies in which such objects reside.

Other researchers on the project include Prof. Ohad Shemmer of the University of North Texas, who took part in the earlier stage of the project as a Ph.D student at Tel Aviv University, and Prof. Paulina Lira, from the University of Chile.

George Hunka | EurekAlert!
Further information:
http://www.aftau.org

Further reports about: Chile Hole black hole black populations massive black hole

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>