Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biophysicists unravel secrets of genetic switch

31.08.2012
When an invading bacterium or virus starts rummaging through the contents of a cell nucleus, using proteins like tiny hands to rearrange the host’s DNA strands, it can alter the host’s biological course.

The invading proteins use specific binding, firmly grabbing onto particular sequences of DNA, to bend, kink and twist the DNA strands. The invaders also use non-specific binding to grasp any part of a DNA strand, but these seemingly random bonds are weak.

Emory University biophysicists have experimentally demonstrated, for the fist time, how the nonspecific binding of a protein known as the lambda repressor, or C1 protein, bends DNA and helps it close a loop that switches off virulence. The researchers also captured the first measurements of that compaction.

Their results, published in Physical Review E, support the idea that nonspecific binding is not so random after all, and plays a critical role in whether a pathogen remains dormant or turns virulent.

“Our findings are the first direct and quantitative determination of non-specific binding and compaction of DNA,” says Laura Finzi, an Emory professor of biophysics whose lab led the study. “The data are relevant for the understanding of DNA physiology, and the dynamic characteristics of an on-off switch for the expression of genes.”

C1 is the repressor protein of the lambda bacteriophage, a virus that infects the bacterial species E. coli, and a common laboratory model for the study of gene transcription.

The virus infects E. coli by injecting its DNA into the host cell. The viral DNA is then incorporated in the bacterium’s chromosome. Shortly afterwards, binding of the C1 protein to specific sequences on the viral DNA induces the formation of a loop. As long as the loop is closed, the virus remains dormant. If the loop opens, however, the machinery of the bacteria gets hi-jacked: The virus switches off the bacteria’s genes and switches on its own, turning virulent.

Finzi runs one of a handful of physics labs using single-molecule techniques to study the mechanics of gene expression. In 2009, her lab proved the formation of the C1 loop. “We then analyzed the kinetics of loop formation and gained evidence that non-specific binding played a role,” Finzi says. “We wanted to build on that work by precisely characterizing that role.”

Emory undergraduate student Chandler Fountain led the experimental part of the study. He used magnetic tweezers, which can pull on DNA molecules labeled with miniscule magnetic beads, to stretch DNA in a microscope flow chamber. Gradually, the magnets are moved closer to the DNA, pulling it further, so the length of the DNA extension can be plotted against the applied force.

“You get a curve,” Finzi explains. “It’s not linear, because DNA is a spring. Then you put the same DNA in the presence of C1 protein and see how the curve changes. Now, you need more force to get to the same extension because the protein holds onto the DNA and bends it.”

“The loop basically acts as a molecular switch, and is very stable during quiescence, yet it is highly sensitive to the external environment,” Finzi says. “If the bacteria is starved or poisoned, for instance, the viral DNA receives a signal that it’s time to get off the boat and spread to a new host, and the loop is opened. We wanted to understand how this C1-mediated, loop-based mechanism can be so stable during quiescence, and yet so responsive to switching to virulence when it receives the signal to do so.”

An analysis of the data suggests that, while the specific binding of the C1 protein forms the loop, the non-specific binding acts like a kind of zipper, facilitating the closure of the loop, and keeping it stable until the signal comes to open it.

“The zipper-like effect of the weaker binding sites also allows the genetic switch to be more responsive to the environment, providing small openings that allow it to breathe, in a sense,” Finzi explains. “So the loop is never permanently closed.”

The information about how the C1 genetic switch works may provide insights into the workings of other genetic switches.

“Single-molecule techniques have opened a new era in the mechanics of biological processes,” Finzi says. “I hope this kind of experiment will lead to better understanding of how our own DNA is compacted into chromosomes, and how it unravels locally to become expressed.”

Other authors on the paper include Sachin Goyal, formerly a post-doc in the Finzi lab; Emory cell biologist David Dunlap; and Emory theoretical physicist Fereydoon Family. The research was funded by the National Institutes of Health.

Beverly Clark | EurekAlert!
Further information:
http://www.emory.edu
http://esciencecommons.blogspot.de/2012/08/biophysicists-unravel-secrets-of.html

More articles from Physics and Astronomy:

nachricht NASA's James Webb Space Telescope completes final cryogenic testing
21.11.2017 | NASA/Goddard Space Flight Center

nachricht Previous evidence of water on mars now identified as grainflows
21.11.2017 | US Geological Survey

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>