Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First biological evidence of a supernova

08.05.2013
Researchers find hints of supernova iron in bacteria microfossils

In fossil remnants of iron-loving bacteria, researchers of the Cluster of Excellence Origin and Structure of the Universe at the Technische Universitaet Muenchen (TUM), found a radioactive iron isotope that they trace back to a supernova in our cosmic neighborhood.


Cassiopeia A: Remnants of a supernova in the constellation Cassiopeia, about 11,000 light-years away. The stellar explosion took place about 330 years ago.

This is the first proven biological signature of a starburst on our earth. The age determination of the deep-drill core from the Pacific Ocean showed that the supernova must have occurred about 2.2 million years ago, roughly around the time when the modern human developed.

Most of the chemical elements have their origin in core collapse supernovae. When a star ends its life in a gigantic starburst, it throws most of its mass into space. The radioactive iron isotope Fe-60 is produced almost exclusively in such supernovae. Because its half-life of 2.62 million years is short compared to the age of our solar system, no supernova iron should be present on Earth. Therefore, any discovery of Fe-60 on Earth would indicate a supernova in our cosmic neighborhood. In the year 2004, Fe-60 was discovered on Earth for the first time in a ferromanganese crust obtained from the floor of the equatorial Pacific Ocean. Its geological dating puts the event around 2.2 million years ago.

So-called magnetotactic bacteria live within the sediments of the Earth’s oceans, close to the water-sediment interface. They make within their cells hundreds of tiny crystals of magnetite (Fe3O4), each approximately 80 nanometers in diameter. The magnetotactic bacteria obtain the iron from atmospheric dust that enters the ocean. Nuclear astrophysicist Shawn Bishop from the Technische Universitaet Muenchen conjectured, therefore, that Fe-60 should also reside within those magnetite crystals produced by magnetotactic bacteria extant at the time of the supernova interaction with our planet. These bacterially produced crystals, when found in sediments long after their host bacteria have died, are called “magnetofossils.”

Shawn Bishop and his colleagues analyzed parts of a Pacific Ocean sediment core obtained from the Ocean Drilling Program, dating between about 1.7 million and 3.3 million years ago. They took sediment samples corresponding to intervals of about 100,000 years and treated them chemically to selectively dissolve the magnetofossils – thereby extracting any Fe-60 they might contain.

Finally, using the ultra sensitive accelerator mass spectrometry system at the Maier Leibnitz Laboratory in Garching, Munich, they found a tantalizing hint of Iron-60 atoms occurring around 2.2 million years ago, which matches the expected time from the ferromanganese study. “It seems reasonable to suppose that the apparent signal of Fe-60 could be remains of magnetite chains formed by bacteria on the sea floor as a starburst showered on them from the atmosphere”, Shawn Bishop says. He and his team are now preparing to analyze a second sediment drill core, containing upwards of 10 times the amount of material as the first drill core, to see if it also holds the Fe-60 signal and, if it does, to map out the shape of the signal as a function of time.

Publication:
APS April Meeting 2013, Volume 58, Number 4
http://meetings.aps.org/link/BAPS.2013.APR.X8.2
Nature News, 15. April 2013, DOI: 10.1038/nature.2013.12797
Contact:
Prof. Dr. Shawn Bishop
Physik Department E12
Technische Universitaet Muenchen
James-Franck-Straße 1
85748 Garching Germany
Tel.: +49 89 289 12437

Dr. Andreas Battenberg | EurekAlert!
Further information:
http://www.tum.de
http://www.tum.de/en/about-tum/news/press-releases/short/article/30832/

More articles from Physics and Astronomy:

nachricht One-way roads for spin currents
23.05.2018 | Singapore University of Technology and Design

nachricht Tunable diamond string may hold key to quantum memory
23.05.2018 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>