Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First known binary star is discovered to be a triplet, quadruplet, quintuplet, sextuplet system

11.12.2009
Alcor, 1 half of the first known binary star system, has its own surprise star companion

In ancient times, people with exceptional vision discovered that one of the brightest stars in the Big Dipper was, in fact, two stars so close together that most people cannot distinguish them. The two stars, Alcor and Mizar, were the first binary stars—a pair of stars that orbit each other—ever known.

Modern telescopes have since found that Mizar is itself a pair of binaries, revealing what was once thought of as a single star to be four stars orbiting each other. Alcor has been sometimes considered a fifth member of the system, orbiting far away from the Mizar quadruplet.

Now, an astronomer at the University of Rochester and his colleagues have made the surprise discovery that Alcor is also actually two stars, and is apparently gravitationally bound to the Mizar system, making the whole group a sextuplet. This would make the Mizar-Alcor sextuplet the second-nearest such system known. The discovery is especially surprising because Alcor is one of the most studied stars in the sky.

"Finding that Alcor had a stellar companion was a bit of serendipity," says Eric Mamajek, assistant professor of physics and astronomy at the University of Rochester, and leader of the team that found the star. "We were trying a new method of planet hunting and instead of finding a planet orbiting Alcor, we found a star."

Mamajek says that a separate group of scientists, led by Ben Oppenheimer of the American Natural History Museum, has also just found that the Alcor companion is physically associated with the star.

That group has also recorded a rough spectrum of the star, which Mamajek says confirms his prediction that the companion is a cool and dim M-class dwarf star.

Mamajek and colleagues at the University of Arizona used the Multiple Mirror Telescope in Arizona, which has a secondary mirror capable of flexing slightly to compensate for the twinkling the Earth's atmosphere normally imparts to starlight. With the clearest images he could obtain of nearby stars, Mamajek's team used computer algorithms to remove as much glare as possible from the image of a star in the hopes of spotting a planet near the star. Planets are so much dimmer than their parent stars that spotting one is like trying to discern a firefly next to a spotlight from several miles away, says Mamajek.

Though Mamajek was unable to find any planets in the first group of stars he surveyed, he did stumble across the tiny star hidden in the glare of Alcor. Not only did Mamajek's project reveal the image of the star, but its presence was able to explain slight deviations in movement that scientists had noticed in Alcor. In addition, Mamajek estimates that the small companion star is likely a third as massive as our sun, and explains why astronomers have detected unexpectedly high levels of X-rays coming from Alcor—dwarf stars naturally radiate high levels of X-rays.

"It's pretty exciting to have found a companion to this particular star," says Mamajek. "Alcor and Mizar weren't just the first known binaries—the four stars that were once thought to be the single Mizar were discovered in lots of 'firsts' throughout history."

Benedetto Castelli, Galileo's protege and collaborator, first observed with a telescope that Mizar was not a single star in 1617, and Galileo observed it a week after hearing about this from Castelli, and noted it in his notebooks, says Mamajek. Those two stars, called Mizar A and Mizar B, together with Alcor, in 1857 became the first binary stars ever photographed through a telescope. In 1890, Mizar A was discovered to itself be a binary, being the first binary to be discovered using spectroscopy. In 1908, spectroscopy revealed that Mizar B was also a pair of stars, making the group the first-known quintuple star system.

Mamajek says some astronomers have raised the question of whether Alcor is truly a part of the system made up of the Mizar group of stars because Alcor's motion isn't what scientists would expect it to be if it were gravitationally connected to the Mizar group. Mamajek says that indeed Alcor is part of the same system, and that the influence of Alcor's newly discovered companion is partly responsible for Alcor's unexpected motion.

Mamajek is continuing his efforts to find planets around nearby stars, but his attention is not completely off Alcor and Mizar. "You see how the disk of Alcor B doesn't seem perfectly round?" says Mamajek, pointing toward an image of Alcor and its new companion. "Some of us have a feeling that Alcor might actually have another surprise in store for us."

About the University of Rochester

The University of Rochester (www.rochester.edu) is one of the nation's leading private universities. Located in Rochester, N.Y., the University gives students exceptional opportunities for interdisciplinary study and close collaboration with faculty through its unique cluster-based curriculum. Its College, School of Arts and Sciences, and Hajim School of Engineering and Applied Sciences are complemented by the Eastman School of Music, Simon School of Business, Warner School of Education, Laboratory for Laser Energetics, Schools of Medicine and Nursing, and the Memorial Art Gallery.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

Further reports about: Alcor Mamajek Mizar Science TV X-rays binary star system binary stars nearby star sextuplet system

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>