Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Billard game in an atom

08.05.2012
Physicists from the Max Planck Institute of Quantum Optics trace the double ionization of argon atoms on attosecond time scales.

When an intense laser pulse interacts with an atom it generates agitation on the micro scale. A rather likely outcome of this interaction is single ionization, where one electron is ejected from the atom. From time to time, however, two electrons can be removed from the atom, resulting in the more complex process of double ionization.


Picture 1: Artist's view of non-sequential double ionization. The 3D plots on the circle were obtained from experimental data and show how the velocities of the two electrons change with the electric-field evolution of the ionizing pulse. The plot in the center is the sum of all these single measurements. From these data, the scientists can reconstruct the detailed process of the double ionization. Courtesey of Christian Hackenberger/ LMU


Picture 2: A scientist of the laboratory for attosecond physics working with the COLTRIMS (Cold Target Recoil Ion Momentum Spectroscopy) apparatus, which is used to perform the experiments on double ionization. Courtesey of Thorsten Naeser/LMU

The detailed course of this process on attosecond time scales (an attosecond is a billionth of a billionth of a second) has been observed by an international team lead by researchers from the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics in close collaboration with colleagues from the Max Planck Institute for Nuclear Physics. The researchers report on their results in Nature Communications (8th May 2012).

The process is reminiscent of a billiard game, where, after a collision, a ball brings another one in motion. The so called non-sequential double ionization investigated by the researchers bears many similarities with such a billiard ball collision. The strong laser light first ejects an electron from the atom, accelerates it away from and then back towards the atomic core. During the collision the electron transfers part of its energy onto a second electron, which is promoted into an excited state of the core. A little later, the electric field of the laser pulse also liberates the second electron from the atomic core. The non-sequential double ionization usually consists of many such recollision and excitation events, which hampers the interpretation of experimental results.
In close collaboration with colleagues from the Max Planck Institute for Nuclear Physics scientists from the Laboratory for Attosecond Physics at the Max Planck Institute of Quantum Optics and international collaborators have now succeeded in confining such a non-sequential double ionization to a single recollision and excitation event allowing for tracing this process on attosecond time scales.

To achieve this, the scientists sent a four femtosecond long laser pulse onto argon atoms (a femtosecond is a millionth of a billionth of a second). The light wave of this pulse essentially consisted of two wave maxima and two wave minima, i.e two cycles. Due to the action of the laser field, most atoms were singly ionized. Every thousandth atom, however, underwent non-sequential double ionization: After the ionization of the first electron just after the first wave maximum, it took approximately 1.8 femtoseconds for it to revisit the atomic core and excite a second electron. The electron stayed in the excited state for about 400 attoseconds before the laser field released it from the core just before the second wave maximum. „We were surprised to see that the second electron leaves the atomic core 200 attoseconds before the maximum of the second cycle“, said Boris Bergues, a scientist in the LAP-Team. It was assumed so far that the second electron escapes the atomic core at the maximum of a cycle.

Through their observations, the scientists gave a deep insight into the quantum dynamics of a laser-driven multi-electron system. Following such dynamics on attosecond time scales is essential for refining our fundamental understanding of matter-light interactions. Application of the experimental technique to the study of molecules might shed light, one day, on more complex 'billiard games' played by multiple electrons in the course of chemical reaction. [Thorsten Naeser]

Original Publication:
Boris Bergues, Matthias Kübel, Nora G. Johnson, Bettina Fischer, Nicolas Camus, Kelsie J. Betsch, Oliver Herrwerth, Arne Senftleben, A. Max Sayler, Tim Rathje, Thomas Pfeifer, Itzik Ben-Itzhak, Robert R. Jones, Gerhard G. Paulus, Ferenc Krausz, Robert Moshammer, Joachim Ullrich,
Matthias F. Kling

Attosecond Tracing of Correlated Electron-Emission in Non-Sequential Double Ionization, Nature Communications, 8th May 2012

For further information, please contact:

Dr. Boris Bergues
Laboratory for Attosecond Physics
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
D-85748 Garching
Phone: +49 (0) 89 / 32905 -323
E-mail: boris.bergues@mpq.mpg.de

Dr. Matthias Kling
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
D-85748 Garching
Phone: +49 (0) 89 / 32905 -234
E-mail: matthias.kling@mpq.mpg.de
http://www.attoworld.de/kling-group/

Priv.-Doz. Dr. Robert Moshammer
Max Planck Institute for Nuclear Physics, Heidelberg
Phone: +49 (0) 6221 / 516 -461
E-mail: robert.moshammer@mpi-hd.mpg.de

Dr. Olivia Meyer-Streng
Max Planck Institute of Quantum Optics
Press and Public Relations
Phone: +49 (0) 89 / 32905 -213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Further information:
http://www.mpq.mpg.de
http://www.attoworld.de/kling-group/

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>