Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biggest, Deepest Crater Exposes Hidden, Ancient Moon

05.03.2010
Shortly after the Moon formed, an asteroid smacked into its southern hemisphere and gouged out a truly enormous crater, the South Pole-Aitken basin, almost 1,500 miles across and more than five miles deep.

"This is the biggest, deepest crater on the Moon -- an abyss that could engulf the United States from the East Coast through Texas," said Noah Petro of NASA’s Goddard Space Flight Center in Greenbelt, Md. The impact punched into the layers of the lunar crust, scattering that material across the Moon and into space. The tremendous heat of the impact also melted part of the floor of the crater, turning it into a sea of molten rock.

That was just an opening shot. Asteroid bombardment over billions of years has left the lunar surface pockmarked with craters of all sizes, and covered with solidified lava, rubble, and dust. Glimpses of the original surface, or crust, are rare, and views into the deep crust are rarer still.

Fortunately, a crater on the edge of the South Pole-Aitken basin may provide just such a view. Called the Apollo Basin and formed by the later impact of a smaller asteroid, it still measures a respectable 300 miles across.

"It’s like going into your basement and digging a deeper hole," said Petro. "We believe the central part of the Apollo Basin may expose a portion of the Moon’s lower crust. If correct, this may be one of just a few places on the Moon where we have a view into the deep lunar crust, because it’s not covered by volcanic material as many other such deep areas are. Just as geologists can reconstruct Earth’s history by analyzing a cross-section of rock layers exposed by a canyon or a road cut, we can begin to understand the early lunar history by studying what’s being revealed in Apollo."

Petro presents his result Thursday, March 4 during the Lunar and Planetary Science meeting in Houston, Texas.

Petro and his team made the discovery with the Moon Mineralogy Mapper (M3), a NASA instrument on board India’s Chandrayaan-1 lunar-orbiting spacecraft. Analysis of the light (spectra) in images from this instrument revealed that portions of the interior of Apollo have a similar composition to the impact melt in the South Pole-Aitken (SPA) basin.

As you go deeper into the Moon, the crust contains minerals have greater amounts of iron. When the Moon first formed, it was largely molten. Minerals containing heavier elements, like iron, sank down toward the core, and minerals with lighter elements, like silicon, potassium, and sodium, floated to the top, forming the original lunar crust.

"The asteroid that created the SPA basin probably carved through the crust and perhaps into the upper mantle. The impact melt that solidified to form the central floor of SPA would have been a mixture of all those layers. We expect to see that it has slightly more iron than the bottom of Apollo, since it went deeper into the crust. This is what we found with M3. However, we also see that this area in Apollo has more iron than the surrounding lunar highlands, indicating Apollo has uncovered a layer of the lunar crust between what is typically seen on the surface and that in the deepest craters like SPA," said Petro.

The lower crust exposed by Apollo survived the impact that created SPA probably because it was on the edge of SPA, several hundred miles from where the impact occurred, according to Petro.

Both SPA and Apollo are estimated to be among the oldest lunar craters, based on the large number of smaller craters superimposed on top of them. As time passes, old craters get covered up with new ones, so a crater count provides a relative age; a crater riddled with additional craters is older than one that appears relatively clean, with few craters overlying it. As craters form, they break up the crust and form a regolith, a layer of broken up rock and dust, like a soil on the Earth.

Although the Apollo basin is ancient and covered with regolith, it still gives a useful view of the lower crust because the smaller meteorite impacts that create most of the regolith don’t scatter material very far.

"Calculations of how the regolith forms indicate that at least 50 percent of the regolith is locally derived," said Petro. "So although what we’re seeing with M3 has been ground up, it still mostly represents the lower crust."

It’s likely Earth wasn’t spared the abusive asteroid bombardment experienced by the Moon. Giant craters on other worlds across the solar system, including Mercury and Mars, indicate the rain from the heavens was widespread. However, on Earth, the record of these events was rubbed out long ago. The crust gets recycled by plate tectonics and weathered by wind and rain, erasing ancient impact craters.

"The Apollo and SPA basins give us a window into the earliest history of the Moon, and the Moon gives us a window into the violent youth of Earth," said Petro.

The research was funded by NASA’s Discovery program, which conducts lower-cost, highly focused planetary science investigations designed to enhance our understanding of the solar system. M3 is managed by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Petro's team includes researchers from NASA Goddard, the University of Maryland, College Park, Brown University, Providence, R.I., Analytical Imaging and Geophysics, LLC, Boulder, Colo., the University of Tennessee, Knoxville, the Defense Advanced Research Projects Agency, Arlington, Va., and the Johns Hopkins University Applied Physics Laboratory, Laurel, Md.

Bill Steigerwald | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/centers/goddard/news/features/2010/biggest_crater.html

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>