Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better tests for Schrödinger cats

18.04.2016

MPQ scientists develop new methods to test the world view of macroscopic realism

In a classical world, objects have pre-existing properties, physical influences are local and cannot travel faster than the speed of light, and it is in principle possible to measure the properties of macroscopic systems without altering them.


Left: All reasonable physical theories, including quantum mechanics (QM), obey the no-signaling (NS) assumption. Local realism (LR) is tightly delimited by Bell inequalities (BI) which are therefore an optimal tool for experimental tests. NS, QM, and LR all live in a probability space with the same dimension; for simplicity the drawing is in two dimensions. Right: The picture is very different for macroscopic realism (MR). MR and QM live in probability spaces of different dimensions. The Leggett-Garg inequalities (LGI) are cuts through the QM space and do not tightly delimit MR. Hence, LGI are not optimal for experimental tests of MR. MPQ, Theory Division

This is referred to as local realism and macroscopic realism, and quantum mechanics is in strong contradiction with both of them. While Bell inequalities have been proven to be an optimal tool for ruling out local realism in quantum experiments, Lucas Clemente and Johannes Kofler from the Theory Division of the Max Planck Institute of Quantum Optics (MPQ) in Garching, Germany, have now shown that inequalities can never be optimal for tests of macroscopic realism.

Their results reveal a hitherto unknown radical difference in the mathematical structures of spatial and temporal correlations in quantum physics, and also provide a better tool for the search of Schrödinger cat-like states (PRL.116.150401, 15. April 2016).

Spin systems are a very simplified, stripped-down model of the interactions between particles making up a material. In the simplest of these models, each particle or “spin” can only be in one of two possible states: “up” or “down”. The interactions between neighbouring particles try to align them either in the same or in the opposite direction, which is known as the Ising model, after the physicist Ernst Ising who studied it in his 1924 PhD thesis.

“Models in different dimensions or with different kinds of symmetries show very different physical behaviour. Our study shows that if one considers models with irregular coupling strengths, all these differences disappear as they are all equivalent to universal models,” says Dr. Gemma De las Cuevas from the MPQ, Munich Local realism is the classical world view which assumes that objects have pre-existing properties and no influence can travel faster than the speed of light.

In 1964, John Bell found that these assumptions put boundaries on the possible correlations between measurements on spatially separated objects. In local realism, spatial correlations need to obey certain inequalities, which are today called Bell inequalities.

In 1984, Arthur Fine proved that Bell inequalities are optimal in the sense that they form a tight boundary for all local realist theories. That means that the set of all Bell inequalities is both necessary and sufficient for local realism: all local realist theories obey the Bell inequalities and, in turn, obeying all Bell inequalities means that there is a local realist explanation for the observed data. Using entangled quantum states between two or more systems, such as photons or atoms, Bell inequalities can be violated. Such quantum violations were measured repeatedly over the past decades with ever increasing perfection. Thus, the world view of local realism has been conclusively ruled out experimentally.

Although quantum mechanics violates local realism, it does not allow for the transmission of information faster than light. This assumption of no-signalling is one of the pillars of special relativity theory. A violation of no-signalling would be in contradiction with causality and allow communication into the past. Quantum experiments can therefore only violate Bell inequalities, but not the no-signalling assumption.

Equally strange as the quantum violation of local realism is the famous paradox of Schrödinger’s cat, where – in a thought experiment – a cat can be put into a superposition of being both dead and alive. Until today, many physicists accept superposition states of microscopic objects but are deeply unsatisfied with the fact that quantum mechanics would in principle allow such a strange behaviour also on the macroscopic scale. The classical world view called macroscopic realism forbids such macroscopic superposition states and asserts that macroscopic objects can in principle be measured without altering their state.

In 1985, Anthony Leggett and Anupam Garg showed that macroscopic realism puts a bound on the possible temporal correlations of sequential measurements performed on a single quantum system. These temporal correlations need to obey inequalities, which are now called Leggett-Garg inequalities.

In the past years, Leggett-Garg inequalities were violated in many experiments, albeit only with microscopic quantum systems, which did not rule out macroscopic realism. Whether or not one can put macroscopic objects, such as cats, in superpositions is experimentally not yet decided and is one of the most exciting open questions in the foundations of physics.

Although local realism is about correlations in space between at least two systems, and macroscopic realism is about correlations in time of a single object, the two concepts have many analogies, and the corresponding Bell and Leggett-Garg inequalities are almost identical mathematically. However, the work of Clemente and Kofler has now revealed a remarkable and hitherto unknown disanalogy. With a sophisticated dimensional analysis of probability spaces they were able to prove that Fine’s theorem for local realism does not apply for macroscopic realism. In other words, Leggett-Garg inequalities do not form an optimal tight boundary for macrorealistic theories like Bell’s inequalities do for local realism (see Figure).

Interestingly, it is the temporal analogy to the no-signalling assumption, which does the trick. This assumption, called no-signalling in time, demands that for macroscopic objects later measurement outcomes cannot depend on earlier measurements. It holds in macroscopic realism but is violated in quantum mechanics. “In contrast to the Leggett-Garg inequalities, the combination of all no-signalling in time conditions is both necessary and sufficient for macroscopic realism. This reveals a striking difference between spatial correlations in tests of local realism and temporal correlations in tests of macroscopic realism”, Clemente explains.

Consequently, experimentalists aiming at violating macroscopic realism should stop focusing on the Leggett-Garg inequalities, which they have done for so many years now. “Leggett-Garg inequalities unnecessarily limit the parameter space in which potential violations of macroscopic realism can be found. No-signalling in time is not only a better but even optimal condition for experiments which try to test whether there can be Schrödinger cats in nature”, Kofler adds. [LC/JK]

Original publication:

Lucas Clemente and Johannes Kofler
No Fine theorem for macrorealism: Limitations of the Leggett-Garg inequality
Phys.Rev.Lett.116.150401, DOI:10.1103, 15 April 2016

Contact:

Dr. Johannes Kofler
Max Planck Institute of Quantum Optics
Hans-Kopfermann-Str. 1
85748 Garching, Germany
Phone: +49 (0)89 / 32 905 - 242
E-mail: johannes.kofler@mpq.mpg.de

Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49 (0)89 / 32 905 - 213
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>