Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Berkeley scientists discover an 'instant cosmic classic' supernova

26.08.2011
Supercomputing, fast networks key to early discovery of explosion

A supernova discovered yesterday is closer to Earth—approximately 21 million light-years away—than any other of its kind in a generation. Astronomers believe they caught the supernova within hours of its explosion, a rare feat made possible with a specialized survey telescope and state-of-the-art computational tools.

The finding of such a supernova so early and so close has energized the astronomical community as they are scrambling to observe it with as many telescopes as possible, including the Hubble Space Telescope.

Joshua Bloom, assistant professor of astronomy at the University of California, Berkeley, called it "the supernova of a generation." Astronomers at Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, who made the discovery predict that it will be a target for research for the next decade, making it one of the most-studied supernova in history.

The supernova, dubbed PTF 11kly, occurred in the Pinwheel Galaxy, located in the "Big Dipper," otherwise known as the Ursa Major constellation. It was discovered by the Palomar Transient Factory (PTF) survey, which is designed to observe and uncover astronomical events as they happen.

"We caught this supernova very soon after explosion. PTF 11kly is getting brighter by the minute. It's already 20 times brighter than it was yesterday," said Peter Nugent, the senior scientist at Berkeley Lab who first spotted the supernova. Nugent is also an adjunct professor of astronomy at UC Berkeley. "Observing PTF 11kly unfold should be a wild ride. It is an instant cosmic classic."

He credits supercomputers at the National Energy Research Scientific Computing Center (NERSC), a Department of Energy supercomputing center at Berkeley Lab, as well as high-speed networks with uncovering this rare event in the nick of time.

The PTF survey uses a robotic telescope mounted on the 48-inch Samuel Oschin Telescope at Palomar Observatory in Southern California to scan the sky nightly. As soon as the observations are taken, the data travels more than 400 miles to NERSC via the National Science Foundation's High Performance Wireless Research and Education Network and DOE's Energy Sciences Network (ESnet). At NERSC, computers running machine learning algorithms in the Real-time Transient Detection Pipeline scan through the data and identify events to follow up on. Within hours of identifying PTF 11kly, this automated system sent the coordinates to telescopes around the world for follow-up observations.

Three hours after the automated PTF pipeline identified this supernova candidate, telescopes in the Canary Islands (Spain) had captured unique "light signatures," or spectra, of the event. Twelve hours later, his team had observed the event with a suite of telescopes including the Lick Observatory (California), and Keck Observatory (Hawaii) and determined the supernova belongs to a special category, called Type Ia. Nugent notes that this is the earliest spectrum ever taken of a Type Ia supernova.

"Type Ia supernova are the kind we use to measure the expansion of the Universe. Seeing one explode so close by allows us to study these events in unprecedented detail," said Mark Sullivan, the Oxford University team leader who was among the first to follow up on this detection.

"We still do not know for sure what causes such explosions," said Weidong Li, senior scientist at UC Berkeley and collaborator of Nugent. "We are using images from the Hubble Space Telescope, taken fortuitously years before an explosion to search for clues to the event's origin."

The team will be watching carefully over the next few weeks, and an urgent request to NASA yesterday means the Hubble Space Telescope will begin studying the supernova's chemistry and physics this weekend.

Catching supernovae so early allows a rare glimpse at the outer layers of the supernova, which contain hints about what kind of star exploded. "When you catch them this early, mixed in with the explosion you can actually see unburned bits from star that exploded! It is remarkable," said Andrew Howell of UC Santa Barbara/Las Cumbres Global Telescope Network. "We are finding new clues to solving the mystery of the origin of these supernovae that has perplexed us for 70 years. Despite looking at thousands of supernovae, I've never seen anything like this before."

"The ability to process all of this data in near real-time and share our results with collaborators around the globe through the Science Gateway at NERSC is an invaluable tool for following up on supernova events," says Nugent. "We wouldn't have been able to detect and observe this candidate as soon as we did without the resources at NERSC."

At a mere 21 million light-years from Earth, a relatively small distance by astronomical standards, the supernova is still getting brighter, and might even be visible with good binoculars in ten days' time, appearing brighter than any other supernova of its type in the last 30 years.

"The best time to see this exploding star will be just after evening twilight in the Northern hemisphere in a week or so," said Oxford's Sullivan. "You'll need dark skies and a good pair of binoculars, although a small telescope would be even better."

The scientists in the PTF have discovered more than 1,000 supernovae since it started operating in 2008, but they believe this could be their most significant discovery yet. The last time a supernova of this sort occurred so close was in 1986, but Nugent notes that this one was peculiar and heavily obscured by dust.

'"Before that, you'd have to go back to 1972, 1937 and 1572 to find more nearby Type Ia supernovae," says Nugent.

The Palomar Transient Factory is a survey operated a Palomar Observatory by the California Institute of Technology on behalf of a worldwide consortium of partner institutions. Collaborators on PTF 11kly with Nugent, Bloom and Li are Brad Cenko, Alex V. Filippenko, Geoffrey Marcy, Adam Miller (UC Berkeley), Rollin C. Thomas (Lawrence Berkeley National Laboratory), Sullivan (Oxford University), and Andrew Howell (UC Santa Barbara/Las Cumbres Global Telescope Network).

Read more about how NERSC supports the Palomar Transient Factory.

About Berkeley Lab

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit www.lbl.gov.

About NERSC

The National Energy Research Scientific Computing Center (NERSC) is the primary high-performance computing facility for scientific research sponsored by the U.S. Department of Energy's Office of Science. Located at Lawrence Berkeley National Laboratory, the NERSC Center serves more than 4,000 scientists at national laboratories and universities conducting fundamental research in a wide range of disciplines.

Linda Vu | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>