Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Berkeley Lab scientists read the cosmic writing on the wall

22.03.2013
NERSC supercomputing a key to Planck's revision of universal recipe

Thanks to a supersensitive space telescope and some sophisticated supercomputing, scientists from the international Planck collaboration have made the closest reading yet of the most ancient story in our universe: the cosmic microwave background (CMB).

Today, the team released preliminary results based on the Planck observatory's first 15 months of data. Using supercomputers at the U.S. Department of Energy's (DOE) National Energy Research Scientific Computing Center (NERSC) Planck scientists have created the most detailed and accurate maps yet of the relic radiation from the big bang. They reveal that the universe is 100 million years older than we thought with more matter and less dark energy.

"These maps are proving to be a goldmine containing stunning confirmations and new puzzles," says Martin White, a Planck scientist and physicist with University of California Berkeley and at Lawrence Berkeley National Laboratory (Berkeley Lab). "This data will form the cornerstone of our cosmological model for decades to come and spur new directions in research."

Decoding the Cosmos

Written in light shortly after the big bang, the CMB is a faint glow that permeates the cosmos. Studying it can help us understand how our universe was born, its nature, composition and eventual fate. "Encoded in its fluctuations are the parameters of all cosmology, numbers that describe the universe in its entirety," says Julian Borrill, a Planck collaborator and cosmologist in the Computational Research Division at Berkeley Lab.

However, CMB surveys are complex and subtle undertakings. Even with the most sophisticated detectors, scientists still need supercomputing to sift the CMB's faint signal out of a noisy universe and decode its meaning.

Hundreds of scientists from around the world study the CMB using supercomputers at NERSC, a DOE user facility based at Berkeley Lab. "NERSC supports the entire international Planck effort," says Borrill. A co-founder of the Computational Cosmology Center (C3) at the lab, Borrill has been developing supercomputing tools for CMB experiments for over a decade. The Planck observatory, a mission of the European Space Agency with significant participation from NASA, is the most challenging yet.

Parked in an artificial orbit about 800,000 miles away from Earth, Planck's 72 detectors complete a full scan of the sky once every six months or so. Observing at nine different frequencies, Planck gathers about 10,000 samples every second, or a trillion samples in total for the 15 months of data included in this first release. In fact, Planck generates so much data that, unlike earlier CMB experiments, it's impossible to analyze exactly, even with NERSC's powerful supercomputers.

Instead, CMB scientists employ clever workarounds. Using approximate methods they are able to handle the Planck data volume, but then they need to understand the uncertainties and biases their approximations have left in the results.

One particularly challenging bias comes from the instrument itself. The position and orientation of the observatory in its orbit, the particular shapes and sizes of detectors (these vary) and even the overlap in Planck's scanning pattern affect the data.

To account for such biases and uncertainties, researchers generate a thousand synthetic (or simulated) copies of the Planck data and apply the same analysis to these. Measuring how the approximations affect this simulated data allows the Planck team to account for their impact on the real data.

Growing Challenges

With each generation of NERSC supercomputers, the Planck team has adapted its software to run on more and more processors, pushing the limits of successive systems while reducing the time it takes to run a greater number of complex calculations.

"By scaling up to tens of thousands of processors, we've reduced the time it takes to run these calculations from an impossible 1,000 years down to a few weeks," says Ted Kisner, a C3 member at Berkeley Lab and Planck scientist. In fact, the team's codes are so demanding that they're often called on to push the limits of new NERSC systems.

Access to the NERSC Global Filesystem and vast online and offline storage has also been key. "CMB data over the last 15 years have grown with Moore's Law, so we expect a two magnitude increase in data in the coming 15 years, too," says Borrill.

In 2007 NASA and DOE negotiated a formal interagency agreement that guaranteed Planck access to NERSC for the duration of its mission. "Without the exemplary interagency cooperation between NASA and DOE, Planck would not be doing the science it's doing today," says Charles Lawrence of NASA's Jet Propulsion Laboratory (JPL). A Planck project scientist, Lawrence leads the U.S. team for NASA.

NASA's Planck Project Office is based at JPL. JPL contributed mission-enabling technology for both of Planck's science instruments. European, Canadian and U.S. Planck scientists work together to analyze the Planck data. More information is online at http://www.nasa.gov/planck and http://www.esa.int/planck.

NERSC is supported by DOE's Office of Science.

About Berkeley Lab

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

About the DOE Office of Science

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov.

About NERSC

The National Energy Research Scientific Computing Center (NERSC) is the primary high-performance computing facility for scientific research sponsored by the U.S. Department of Energy's Office of Science. Located at Berkeley Lab, NERSC serves more than 4,000 scientists at national laboratories and universities across a full range of scientific disciplines. For more, visit http://www.nersc.gov.

About the Computational Cosmology Center (C3)

C3 is a focused collaboration of astrophysicists and computational scientists whose goals are to develop the tools, techniques and technologies to meet the analysis challenges posed by present and future cosmological data sets. For more, visit http://c3.lbl.gov.

Margie Wylie | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Physics and Astronomy:

nachricht NASA's SDO sees partial eclipse in space
29.05.2017 | NASA/Goddard Space Flight Center

nachricht Strathclyde-led research develops world's highest gain high-power laser amplifier
29.05.2017 | University of Strathclyde

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>