Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bending the rules

30.06.2014

A UCSB postdoctoral scholar in physics discovers a counterintuitive phenomenon: the coexistence of superconductivity with dissipation

For his doctoral dissertation in the Goldman Superconductivity Research Group at the University of Minnesota, Yu Chen, now a postdoctoral researcher at UC Santa Barbara, developed a novel way to fabricate superconducting nanocircuitry. However, the extremely small zinc nanowires he designed did some unexpected — and sort of funky — things.

Chen, along with his thesis adviser, Allen M. Goldman, and theoretical physicist Alex Kamenev, both of the University of Minnesota, spent years seeking an explanation for these extremely puzzling effects. Their findings appear this week in Nature Physics.

"We were determined to figure out how we could reconcile the strange phenomena with the longstanding rules governing superconductivity," said lead author Chen. "The coexistence of superconductivity with dissipation, which we observed, is counterintuitive and bends the rules as we know them."

Typically superconductivity and dissipation are thought to be mutually exclusive because dissipation, a process in thermodynamic systems whereby electric energy is transformed into heat, is a feature of a normal — versus a superconductive — state.

"But we discovered that superconductivity and dissipation can coexist under rather generic conditions in what appears to be a universal manner," Chen said.

After long and careful work, which involved both experimental and theoretical efforts, the researchers found an explanation that fits. Behind all of the observed phenomena is a peculiar nonequilibrium state of quasiparticles — electron-like excitations that formed in the nanowires Chen designed.

The quasiparticles are created by phase slips. In a superconductive state, when supercurrent flows through the nanowire, the quantum mechanical function describing the superconductivity of the wire evolves along the length of the wire as a spiral shaped like a child's Slinky toy. From time to time, one of the revolutions of the spiral contracts and disappears altogether. This event is called a phase slip. This quirk generates quasiparticles, giving rise to a previously undiscovered voltage plateau state where dissipation and superconductivity coexist.

"The most significant achievement was making the nanowires smaller and cooler than anyone had done previously," Kamenev said. "This allowed the quasiparticles to travel through the wire faster and avoid relaxation. This leads to a peculiar nonthermal state, which combines properties of a superconductor and a normal metal at the same time."

In addition to discovering this unique phenomenon, the team also found another heretofore-unseen property in the voltage plateau. When a magnetic field is turned on in the voltage plateau state, rather than shrinking the superconducting region, which is what would usually occur, the superconducting area expands and is enhanced.

"This is an unexpected property of very small nanowires," said Goldman.

This state appears to be universal for ultra-small superconducting circuitry like Chen's, which features ideal contacts between the nano-elements and the leads. Such nanoscale superconductors may be key components in future superconducting computer systems.

"Our findings demonstrate that superconducting nanocircuits can be used as a simple, but rather generic platform to investigate nonequilibrium quantum phenomena," Chen concluded.

"Now we need to explore the parameters of nanowires that give rise to the effect and those that don't," Goldman said. "We also need to examine the behavior of wires of different lengths and different materials in order to further define the parameters."

Julie Cohen | Eurek Alert!

Further reports about: explanation generic nanowires nonequilibrium parameters phenomena rise superconductivity voltage

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>