Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bending light with better precision

16.08.2011
Physicists from the University of California at San Diego (UCSD) have demonstrated a new technique to control the speed and direction of light using memory metamaterials whose properties can be repeatedly changed.

A metamaterial is a structure engineered from a variety of substances that, when put together, yield optical properties that do not exist in nature. In this experiment, the metamaterial in use is a hybrid device made of split ring resonators (SRRs) – gold rings with a chunk taken out of one side – over a thin layer of vanadium dioxide (VO2).

By applying a pulse of electricity to this SRR-VO2 hybrid, the physicists can create a temperature gradient along the device that selectively changes the way the material interacts with light – changing the light's speed and direction, for example, or how much light is reflected or absorbed at each point along the device. The material even "remembers" these changes after the voltage is removed.

In a paper published in the AIP's Applied Physics Letters, the UCSD team – in collaboration with researchers from Duke University in Durham, N.C., and the Electronics and Telecommunications Research Institute (ETRI) in South Korea – applied this gradient-producing principle to show that it's possible to modify the way that light interacts with a metamaterial on the order of a single wavelength for 1-terahertz-frequency radiation. Being able to tune metamaterial devices at this level of precision – repeatedly, as required, and after the metamaterial has been fabricated – opens the door to new techniques, including the ability to manufacture Gradient Index of Refraction (GRIN) devices, that can be used for a variety of imaging and communication technologies.

Article: "Reconfigurable Gradient Index Using VO2 Memory Metamaterials" is published in Applied Physics Letters.

Authors: M.D. Goldflam (1), T. Driscoll (1, 2), B. Chapler (1), O. Khatib (1), N. Marie Jokerst (2), S. Palit (2), D.R. Smith (2), Bong-jun Kim (3), Gi-wan Seo (4), Hyun-Tak Kim (3, 4), M. Di Ventra (1), and D.N. Basov (1).

(1) University of California, San Diego
(2) Duke University
(3) Electronics and Telecommunications Research Institute, Republic of Korea
(4) University of Science and Technology, Republic of Korea

Jennifer Lauren Lee | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht The moon is front and center during a total solar eclipse
24.07.2017 | NASA/Goddard Space Flight Center

nachricht Superluminous supernova marks the death of a star at cosmic high noon
24.07.2017 | Royal Astronomical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>