Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beetle Bling: Researchers Discover Optical Secrets of 'Metallic' Beetles

26.04.2011
Article published in new Optical Materials Express journal unveils secrets of how biology recreates look and luster of gold and silver
Costa Rica was once regarded as the poorest of all the colonies of the Spanish Empire, sadly deficient in the silver and gold so coveted by conquistadors. As it turns out, all of the glittering gold and silver those explorers could have ever wanted was there all along, in the country's tropical rainforests—but in the form of two gloriously lustrous species of beetle.

Device used to carry out the direct reflectance measurements under normal incidence of non-polarized light on the elytron (forewing) of a beetle. The allowed displacements and rotations of the probe holder allow the researchers to focus the beam on the beetle’s elytron perpendicularly.

Today, the brilliant gold- (Chrysina aurigans) and silver-colored (Chrysina limbata) beetles have given optics researchers new insights into the way biology can recreate the appearance of some of nature's most precious metals, which in turn may allow researchers to produce new materials based on the natural properties found in the beetles' coloring.

A team of researchers at the University of Costa Rica has found that the beetles' metallic appearance is created by the unique structural arrangements of many dozens of layers of exo-skeletal chitin in the elytron, a hardened forewing that protects the delicate hindwings that are folded underneath. A paper about the discovery appears in the first issue of the Optical Society's (OSA) newest open access journal, Optical Materials Express, which launched this month.

The beetles were captured in the University of Costa Rica's Alberto Brenes Mesén Biological Reserve, a tropical rainforest environment. "The metallic appearance of these beetles may allow them to be unnoticed, something that helps them against potential predators," says physicist and study leader William E. Vargas. The surface of their elytra "reflects light in a way that they look as bright spots seen from any direction," he explains. "In a tropical rainforest, there are many drops of water suspended from the leaves of trees at ground level, along with wet leaves, and these drops and wet leaves redirect light by refraction and reflection respectively, in different directions. Thus, metallic beetles manage to blend with the environment."

To interpret the cause of this metallic look, Vargas and his team assumed that a sequence of layers of chitin appears through the cuticle, with successive layers having slightly different refractive indices.. In these beetles, the cuticle, which is just 10 millionths of a meter deep, has some 70 separate layers of chitin—a nitrogen-containing complex sugar that creates the hard outer skeletons of insects, crabs, shrimps, and lobsters. The chitin layers become progressively thinner with depth, forming a so-called "chirped" structure.

"Because the layers have different refractive indices," Vargas says, "light propagates through them at different speeds. The light is refracted through—and reflected by—each interface giving, in particular, phase differences in the emerging reflected rays. For several wavelengths in the visible range, there are many reflected rays whose phase differences allow for constructive interference. This leads to the metallic appearance of the beetles."

This is similar to the way in which a prism breaks white light into the colors of the rainbow by refraction, but in the case of these beetles, different wavelengths, or colors of light are reflected back more strongly by different layers of chitin. This creates the initial palette of colors that enable the beetles to produce their distinctive hues. The mystery the researchers still needed to understand in more detail, however, was how the beetles could so perfectly create the structure causing the brilliant metallic tones of silver and gold.

Using a device they specially designed to measure the reflection of light when it strikes the curved surface of the beetles' elytra, Vargas and his colleagues found that as light strikes the interface between each successive layer (the first interface being the boundary between the outside air and the top chitin layer), some of its energy is reflected and some is transmitted down to the next interface.

"This happens through the complete sequence of interfaces," Vargas says.

Because a portion of the light is reflected, it combines with light of the exact same wavelength as it passes back through layer upon layer of chitin, becoming brighter and more intense. Ocean waves can exhibit the same behavior, combining to produce rare but powerful rogue waves. In the case of the beetles, this "perfect storm" of light amplification produces not only the same colors but also the striking sheen and glimmer that we normally associate with fine jewelry.

In the two beetle species, interference patterns are produced by slightly different wavelengths of light, thus producing either silver or gold colors. "For the golden-like beetle, the constructive interference is found for wavelengths larger than 515 nm, the red part of the visible wavelength range," Vargas says, "while for the silver-like beetle it happens for wavelengths larger than 400 nm—that is, for the entire visible wavelength range."

"The detailed understanding of the mechanism used by the beetles to produce this metallic appearance opens the possibility to replicate the structure used to achieve it," Vargas says, "and thus produce materials that, for example, might look like gold or silver but are actually synthesized from organic media."

This potentially could lead to new products or consumer electronics that can perfectly mimic the appearance of precious metals. Other products could be developed for architectural applications that require coatings with a metallic appearance. Vargas notes that in the solar industry, for example, chirped multilayer reflectors could be used as back layers supporting the active or light-absorbing medium, to improve the absorption of the back-reflected light.

The article, "Visible light reflection spectra from cuticle layered materials," by Cristian Campos-Fernández, Daniel E. Azofeifa, Marcela Hernández-Jiménez, Adams Ruiz-Ruiz and William E. Vargas appears in the journal Optical Materials Express.

EDITOR'S NOTE: High-resolution images of the beetles are available upon request. Please contact Angela Stark, astark@osa.org.

About Optical Materials Express
Optical Materials Express (OMEx) is OSA's newest peer-reviewed, open-access journal focusing on the synthesis, processing and characterization of materials for applications in optics and photonics. OMEx, which launched in April 2011, primarily emphasizes advances in novel optical materials, their properties, modeling, synthesis and fabrication techniques; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. For more information, visit www.OpticsInfoBase.org/OMEx.
About OSA
Uniting more than 106,000 professionals from 134 countries, the Optical Society (OSA) brings together the global optics community through its programs and initiatives. Since 1916 OSA has worked to advance the common interests of the field, providing educational resources to the scientists, engineers and business leaders who work in the field by promoting the science of light and the advanced technologies made possible by optics and photonics. OSA publications, events, technical groups and programs foster optics knowledge and scientific collaboration among all those with an interest in optics and photonics. For more information, visit www.osa.org.

Angela Stark | EurekAlert!
Further information:
http://www.osa.org

More articles from Physics and Astronomy:

nachricht When helium behaves like a black hole
22.03.2017 | University of Vermont

nachricht Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars
22.03.2017 | International Centre for Radio Astronomy Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>