Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bats show ability to change their ear shapes, making their hearing more flexible

15.11.2011
"Certain bats can deform the shapes of their ears in a way that changes the animal's ultrasonic hearing pattern. Within just one tenth of a second, these bats are able to change their outer ear shapes from one extreme configuration to another," said Rolf Müller, associate professor of mechanical engineering at Virginia Tech.

Müller and his students wrote a paper on their work that is appearing this week in Physical Review Letters, a prestigious peer-reviewed journal of the American Physical Society. The students are: Li Gao of Shandong, China, a Ph.D. student with Müller, and Sreenath Balakrishnan of Thrissur, Kerala, India, a master's candidate with Virginia Tech's Department of Mechanical Engineering, as well as Weikai He and Zhen Yan, of the School of Physics at Shandong University.

Müller explained the significance of their work, saying, "In about 100 milliseconds, this type of bat can alter his ear shape significantly in ways that would suit different acoustic sensing tasks."

By comparison, "a human blink of an eye takes two to three times as long. As a result of these shape changes, the shape of the animals' spatial hearing sensitivity also undergoes a qualitative change," Müller added.

Bats are flying mammals most well known for their abilities to navigate and pursue their prey in complete darkness. By emitting ultrasonic pulses and listing to the returning echoes, the animals are able to obtain detailed information on their surroundings. Horseshoe bats, in particular, can use their sonar systems to maneuver swiftly through dense vegetation and identify insect prey under difficult conditions.

Acting as biosonar receiving antennas, the ears of bats perform a critical function in bringing about these ultrasonic sensing capabilities.

Using a combination of methods that included high-speed stereo vision and high-resolution tomography, the researchers from Virginia Tech and Shandong University have been able to reconstruct the three-dimensional geometries of the outer ears from live horseshoe bats as they deform in these short time intervals.

Using computer analysis of the deforming shapes, the researchers found that the ultrasonic hearing spotlights associated with the different ear configurations could suit different hearing tasks performed by the animals. Hence, the ear deformation in horseshoe bats could be a substrate for adapting the spatial hearing of the animals on a very short time scale.

The research piggybacks earlier work led by Müller and reported this spring in the Institute of Physics' journal Bioinspiration and Biometrics. That study provided key insights into the various shapes of bat ears among the different species, and illustrated how the differences could affect how their navigation systems worked.

The National Natural Science Foundation of China, Shandong University, the Shandong Taishan Fund, and the China Scholarship Council supported the most recent work.

The collaboration between Shandong University and Virginia Tech started with Müller's opening of a new international laboratory based at the Chinese facility in 2010. The new laboratory focuses on bio-inspired research. In the past, the lab was used by an interdisciplinary group of researchers from the University of Utah, North Carolina State University, and University of California Los Angeles to conduct experiments on the extraordinary capabilities of bats to generate high-powered ultrasonic pulses.

Müller's aspiration in teaching is to bridge the gap between disciplines, especially between biology and engineering.

Müller's research is focused on the understanding of how the most capable biological sensory systems can achieve their best performances. His recent achievements include: providing the first physical explanation for the role of a prominent flap seen in mammalian ears in 2004; discovery of a novel helical scan in the ear directivity of a bat in 2006; discovery of frequency-selective beam-forming by virtue of resonances in noseleaf furrows of a bat, an entirely new bioacoustic paradigm in 2006; establishing the first immediate and quantitative characterization of the spatial information created by a mammal's outer ear in 2007; and now uncovering the acoustic effect of non-rigid ear deformations in bats.

Müller received the Friendship Award of the People's Republic of China, considered China's highest honor for "foreign experts who have made outstanding contributions to the country's economic and social progress." Also, he received a Top Ten Scholars Award from Shandong University in 2006, Tuebingen University's 1999 Dissertation Award, and held a NATO Post-Doctoral Fellowship from 1998 until 2000.

He holds a patent on a method for frequency-driven generation of a multi-resolution decomposition of the input to wave-based sensing arrays.

Lynn Nystrom | EurekAlert!
Further information:
http://www.vt.edu

More articles from Physics and Astronomy:

nachricht X-ray photoelectron spectroscopy under real ambient pressure conditions
28.06.2017 | National Institutes of Natural Sciences

nachricht New photoacoustic technique detects gases at parts-per-quadrillion level
28.06.2017 | Brown University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>