Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bats' echolocation recorded for human exploit

11.05.2010
Bats' remarkable ability to 'see' in the dark uses the echoes from their own calls to decipher the shape of their dark surroundings. This process, known as echolocation, allows bats to perceive their surroundings in great detail, detecting insect prey or identifying threatening predators, and is a skill that engineers are hoping to replicate.

A team of British researchers has worked with six adult Egyptian fruit bats from Tropical World in Leeds to record and recreate their calls. These calls are pairs of 'clicks' from the bats' tongues that they use to fill their surroundings with acoustic energy; the echoes that return allow the bats to form an image of their environment.

New research published today, Tuesday 11 May, in IOP Publishing's Bioinspiration & Biomimetics, describes how engineers and biologists from the Universities of Strathclyde and Leeds worked with the bats to record their double-click echolocation call, and its returning echoes, using a miniature wireless microphone sensor mounted on the bat whilst in flight.

During echolocation, some bats are known to use a natural acoustic gain control. This allows them to emit high-intensity calls without deafening themselves, and then to hear the weak echoes returning from surrounding objects. The researchers replicated this system in electronics to allow the sensor to record both the emitted and reflected echolocation signals, providing an insight into the full echolocation process.

The six bats performed up to sixteen flights each along a flight corridor. Each flight was short - lasting only about three seconds – but, with the bats' clicks only lasting a quarter of a millisecond, a large number of calls were recorded for the scientists to analyse.

Once back into the laboratory, the researchers were able to accurately recreate the echolocation calls using a custom-built ultrasonic loudspeaker. This technique will allow the signals and processes bats use to be applied to human engineering systems such as sonar. Specifically, the researchers are looking to apply these techniques in the positioning of robotic vehicles, used in structural testing applications.

Lead author Simon Whiteley from the Centre for Ultrasonic Engineering at the University of Strathclyde, said, "We aim to understand the echolocation process that bats have evolved over millennia, and employ similar signals and techniques in engineering systems. We are currently looking to apply these methods to positioning of robotic vehicles, which are used for structural testing. This will provide enhanced information on the robots' locations, and hence the location of any structural flaws they may detect."

The article will be available to read from Tuesday 11 May at http://iopscience.iop.org/1748-3190/5/2/026001

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>