Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bats' echolocation recorded for human exploit

11.05.2010
Bats' remarkable ability to 'see' in the dark uses the echoes from their own calls to decipher the shape of their dark surroundings. This process, known as echolocation, allows bats to perceive their surroundings in great detail, detecting insect prey or identifying threatening predators, and is a skill that engineers are hoping to replicate.

A team of British researchers has worked with six adult Egyptian fruit bats from Tropical World in Leeds to record and recreate their calls. These calls are pairs of 'clicks' from the bats' tongues that they use to fill their surroundings with acoustic energy; the echoes that return allow the bats to form an image of their environment.

New research published today, Tuesday 11 May, in IOP Publishing's Bioinspiration & Biomimetics, describes how engineers and biologists from the Universities of Strathclyde and Leeds worked with the bats to record their double-click echolocation call, and its returning echoes, using a miniature wireless microphone sensor mounted on the bat whilst in flight.

During echolocation, some bats are known to use a natural acoustic gain control. This allows them to emit high-intensity calls without deafening themselves, and then to hear the weak echoes returning from surrounding objects. The researchers replicated this system in electronics to allow the sensor to record both the emitted and reflected echolocation signals, providing an insight into the full echolocation process.

The six bats performed up to sixteen flights each along a flight corridor. Each flight was short - lasting only about three seconds – but, with the bats' clicks only lasting a quarter of a millisecond, a large number of calls were recorded for the scientists to analyse.

Once back into the laboratory, the researchers were able to accurately recreate the echolocation calls using a custom-built ultrasonic loudspeaker. This technique will allow the signals and processes bats use to be applied to human engineering systems such as sonar. Specifically, the researchers are looking to apply these techniques in the positioning of robotic vehicles, used in structural testing applications.

Lead author Simon Whiteley from the Centre for Ultrasonic Engineering at the University of Strathclyde, said, "We aim to understand the echolocation process that bats have evolved over millennia, and employ similar signals and techniques in engineering systems. We are currently looking to apply these methods to positioning of robotic vehicles, which are used for structural testing. This will provide enhanced information on the robots' locations, and hence the location of any structural flaws they may detect."

The article will be available to read from Tuesday 11 May at http://iopscience.iop.org/1748-3190/5/2/026001

Joe Winters | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

nachricht Three kinds of information from a single X-ray measurement
11.12.2017 | Friedrich-Schiller-Universität Jena

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>