Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Balloon Rise Over Fort Sumner

03.09.2014

If the stratospheric winds are favorable, a giant balloon will soon rise over the desert, carrying aloft X-Calibur, a cutting-edge telescope

Many a child has forgotten to hold tight to the string of a helium balloon only to have it escape and rise until it disappeared in the glare of the sun. Helium balloons want to rise, but launching a balloon big enough to hold a 747 jetliner with room to spare at the nose and tail and both wingtips isn’t as easy as just letting it go.


NASA

High-pressure helium from Kelly trucks carrying gas cylinders rushes through fill tubes extending from the top of a balloon that is pinned to the ground by a spool truck. The rest of the balloon's flight train is laid out on the ground to the right. The photos in this article were taken during several different balloon campaigns, this one in Antarctica.

In a few days, a balloon-borne telescope sensitive to the polarization of high-energy “hard” X rays will ascend to the edge of the atmosphere above Fort Sumner, N.M., to stare fixedly at black holes and other exotic astronomical objects. It will be carried aloft by one of those 747-jetliner-sized balloons.

When X-Calibur, as the polarimeter is called, looks to the skies, it will see things that have never been seen before because it is looking at characteristics of high-energy light that astronomers are just beginning to explore. Last year Henric Krawczynski, PhD, professor of physics in Arts & Sciences at Washington University in St. Louis and X-Calibur’s principal investigator, described X-Calibur’s mission in an episode of the university’s “Hold that Thought” podcast called “Beautifully Bright Black Holes.”

While the scientific team works to make sure the instrument is flight ready, we asked Scott Barthelmy, PhD, a Washington University graduate who works for NASA’s Goddard Space Flight Center and is the veteran of many stratospheric balloon campaigns, to describe how the giant balloon is launched. What follows is an edited transcript of his description.

SCOTT BARTHELMY: Before launch the entire flight train, consisting of the fan-folded balloon, a “flight ladder” of steel cables, and a parachute and its shroud lines, is laid out on heavy-duty tarps between two specialized launch vehicles, the spool truck and the launch truck.

The balloon, made of plastic as thin as a dry-cleaning bag, rises to a float height of about 120,000 feet, which is three or four times higher than the cruising altitude of commercial airliners. At that height it is above all but half of 1 percent of Earth’s atmosphere.

Once the balloon is laid out, the top end is threaded under the spool on the spool vehicle. The spool is hinged on one side, has a quick release latch on the other, and is coated with Teflon to minimze friction. Valves are then opened on helium-truck hoses and high-pressure helium screams through fill tubes into the tip of the balloon. As the balloon fills, the spool truck moves along the balloon to keep the un-inflated portion stretched out across the ground.

Only the tip of the balloon, called the bubble, is filled because the helium expands by a factor of 200 as it rises mushrooming into a 40-million-cubic-foot sphere, slightly distorted by the weight at the bottom, at float height.

Once the bubble is filled, the launch team waits for a lull in the surface winds and then releases the catchment mechanism on the spool. Strong springs flip the spool out of the way. Now there’s nothing holding the 10,000 pounds of free lift provided by the helium bubble. As the bubble rises, it picks up more and more of the balloon — there’s still about 900 feet laid out on the tarp at this point — and begins to arc over the launch vehicle, a motorized crane that is holding the scientific payload about 10 feet off the ground.

Even though balloons are launched only during the lull at dawn or at dusk, a balloon is a creature of the wind and easily pushed about. It is the launch vehicle’s job to compensate for crosswinds during the delicate few moments before release by maneuvering the payload beneath the rising and drifting balloon.

When the balloon is directly above the launch vehicle and at full stretch, a release pin on the end of the crane boom is pulled by a man standing on the front of the crane.

If the pin is pulled at just the right moment, the balloon will be lofting the full weight of the payload. If it is pulled too early and the balloon hasn’t picked up that weight, the payload will fall to the ground and smash. The balloon must be pulling upward but it can’t be pulling too hard, or the release pin may jam. And it must be a few degrees past vertical, not directly overhead. If it’s directly overhead it might drag the payload through the crane instead of out and away from the crane.

Everything will be lined up and moving in the right direction for only five or 10 seconds. The man on the crane judges the moment, pulling on a lanyard to pop the pin, freeing the balloon to rise — at last — into the atmosphere.

The complex choreography of the launch is managed by employees of NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, under a contract administered by the Goddard Space Flight Center’s Wallops Flight Facility in Wallops Island, Va. In over 40 years of operation, CSBF personnel have launched more than 2,000 balloons.

Armchair observers can watch near-real-time video of the X-Calibur launch on the Columbia Scientific Balloon Facility website. While the balloon is aloft, it will be tracked on a Google Earth map. Click early and often. The balloon might fly as soon as Labor Day.

Contact Information

Diana Lutz
Senior Science Editor
dlutz@wustl.edu
Phone: 314-935-5272

Diana Lutz | newswise

Further reports about: Facility Flight Space X-Calibur atmosphere bubble fan-folded balloon float

More articles from Physics and Astronomy:

nachricht Astronomers discover dizzying spin of the Milky Way galaxy's 'halo'
26.07.2016 | NASA/Goddard Space Flight Center

nachricht Lonely Atoms, Happily Reunited
26.07.2016 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

Partner countries of FAIR accelerator meet in Darmstadt and approve developments

11.07.2016 | Event News

 
Latest News

New study reveals where MH370 debris more likely to be found

27.07.2016 | Earth Sciences

Dirty to drinkable

27.07.2016 | Materials Sciences

Exploring one of the largest salt flats in the world

27.07.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>