Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Balloon Rise Over Fort Sumner

03.09.2014

If the stratospheric winds are favorable, a giant balloon will soon rise over the desert, carrying aloft X-Calibur, a cutting-edge telescope

Many a child has forgotten to hold tight to the string of a helium balloon only to have it escape and rise until it disappeared in the glare of the sun. Helium balloons want to rise, but launching a balloon big enough to hold a 747 jetliner with room to spare at the nose and tail and both wingtips isn’t as easy as just letting it go.


NASA

High-pressure helium from Kelly trucks carrying gas cylinders rushes through fill tubes extending from the top of a balloon that is pinned to the ground by a spool truck. The rest of the balloon's flight train is laid out on the ground to the right. The photos in this article were taken during several different balloon campaigns, this one in Antarctica.

In a few days, a balloon-borne telescope sensitive to the polarization of high-energy “hard” X rays will ascend to the edge of the atmosphere above Fort Sumner, N.M., to stare fixedly at black holes and other exotic astronomical objects. It will be carried aloft by one of those 747-jetliner-sized balloons.

When X-Calibur, as the polarimeter is called, looks to the skies, it will see things that have never been seen before because it is looking at characteristics of high-energy light that astronomers are just beginning to explore. Last year Henric Krawczynski, PhD, professor of physics in Arts & Sciences at Washington University in St. Louis and X-Calibur’s principal investigator, described X-Calibur’s mission in an episode of the university’s “Hold that Thought” podcast called “Beautifully Bright Black Holes.”

While the scientific team works to make sure the instrument is flight ready, we asked Scott Barthelmy, PhD, a Washington University graduate who works for NASA’s Goddard Space Flight Center and is the veteran of many stratospheric balloon campaigns, to describe how the giant balloon is launched. What follows is an edited transcript of his description.

SCOTT BARTHELMY: Before launch the entire flight train, consisting of the fan-folded balloon, a “flight ladder” of steel cables, and a parachute and its shroud lines, is laid out on heavy-duty tarps between two specialized launch vehicles, the spool truck and the launch truck.

The balloon, made of plastic as thin as a dry-cleaning bag, rises to a float height of about 120,000 feet, which is three or four times higher than the cruising altitude of commercial airliners. At that height it is above all but half of 1 percent of Earth’s atmosphere.

Once the balloon is laid out, the top end is threaded under the spool on the spool vehicle. The spool is hinged on one side, has a quick release latch on the other, and is coated with Teflon to minimze friction. Valves are then opened on helium-truck hoses and high-pressure helium screams through fill tubes into the tip of the balloon. As the balloon fills, the spool truck moves along the balloon to keep the un-inflated portion stretched out across the ground.

Only the tip of the balloon, called the bubble, is filled because the helium expands by a factor of 200 as it rises mushrooming into a 40-million-cubic-foot sphere, slightly distorted by the weight at the bottom, at float height.

Once the bubble is filled, the launch team waits for a lull in the surface winds and then releases the catchment mechanism on the spool. Strong springs flip the spool out of the way. Now there’s nothing holding the 10,000 pounds of free lift provided by the helium bubble. As the bubble rises, it picks up more and more of the balloon — there’s still about 900 feet laid out on the tarp at this point — and begins to arc over the launch vehicle, a motorized crane that is holding the scientific payload about 10 feet off the ground.

Even though balloons are launched only during the lull at dawn or at dusk, a balloon is a creature of the wind and easily pushed about. It is the launch vehicle’s job to compensate for crosswinds during the delicate few moments before release by maneuvering the payload beneath the rising and drifting balloon.

When the balloon is directly above the launch vehicle and at full stretch, a release pin on the end of the crane boom is pulled by a man standing on the front of the crane.

If the pin is pulled at just the right moment, the balloon will be lofting the full weight of the payload. If it is pulled too early and the balloon hasn’t picked up that weight, the payload will fall to the ground and smash. The balloon must be pulling upward but it can’t be pulling too hard, or the release pin may jam. And it must be a few degrees past vertical, not directly overhead. If it’s directly overhead it might drag the payload through the crane instead of out and away from the crane.

Everything will be lined up and moving in the right direction for only five or 10 seconds. The man on the crane judges the moment, pulling on a lanyard to pop the pin, freeing the balloon to rise — at last — into the atmosphere.

The complex choreography of the launch is managed by employees of NASA’s Columbia Scientific Balloon Facility in Palestine, Texas, under a contract administered by the Goddard Space Flight Center’s Wallops Flight Facility in Wallops Island, Va. In over 40 years of operation, CSBF personnel have launched more than 2,000 balloons.

Armchair observers can watch near-real-time video of the X-Calibur launch on the Columbia Scientific Balloon Facility website. While the balloon is aloft, it will be tracked on a Google Earth map. Click early and often. The balloon might fly as soon as Labor Day.

Contact Information

Diana Lutz
Senior Science Editor
dlutz@wustl.edu
Phone: 314-935-5272

Diana Lutz | newswise

Further reports about: Facility Flight Space X-Calibur atmosphere bubble fan-folded balloon float

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>