Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Baby stars born to ‘napping’ parents

10.03.2011
Cardiff University astronomers believe that a young star’s long "napping" could trigger the formation of a second generation of smaller stars and planets orbiting around it.

It has long been suspected that the build up of material onto young stars is not continuous but happens in episodic events, resulting in short outbursts of energy from these stars.

However, this has been largely ignored in models of star formation.

Now, by developing advanced computer models to simulate the behaviour of young stars, Cardiff University Astrophysicists Dr Dimitris Stamatellos and Professor Anthony Whitworth, along with Dr David Hubber from the University of Sheffield, have offered a new insight in star formation.

While stars are young they are surrounded by discs of gas and dust, and grow by accreting material from these discs. The discs may break-up to give birth to smaller stars, planets and brown dwarfs - objects larger than planets but not large enough to burn hydrogen like our Sun.

"We know that young stars spend most of their early lives sleeping," said Dr Dimitris Stamatellos. "After they have their lunch, a large chunk of dust and gas from their discs, they take a nap that lasts for a few thousand years. During this nap their brightness is very low.

"As they sleep, their discs grow in mass, but they remain relatively cool, despite the presence of stars right at their centres. Eventually, these discs become unstable and fragment to form low-mass stars and substellar objects, like brown dwarfs and planets."

To date, research has suggested that the radiation from the parent star could heat and stabilize the disc, suppressing its breaking up. However, the researchers discovered that there is ample time in between outbursts to allow the disc to break up and give birth to a new generation of low-mass stars, brown dwarfs, and planets.

The new theory provides an explanation for the formation and the properties of stars with masses below a fifth of that of our Sun, which are estimated to constitute more than 60% of all stars in our Galaxy.

"Our findings suggest that disc fragmentation is possible in nature," says Dr Stamatellos.

"It is important now to investigate whether this is the dominant mechanism for the formation of low-mass stars and brown dwarfs," he adds.

The research was funded by the Science and Technology Facilities Council (STFC) and the Leverhume Trust, and published in the Astrophysical Journal.

Notes

"The importance of episodic accretion for low-mass star formation"is available at iopscience.iop.org/0004-637X/730/1/32/

Animations of the computer simulations can be viewed and downloaded at www.astro.cf.ac.uk/pub/Dimitrios.Stamatellos/News/News.html

More information can be obtained by contacting:

Dimitris Stamatellos
School of Physics and Astronomy, Cardiff University, UK
Tel:+44(0) 2920 875999
Fax:+44(0)2920 874056
Email: D.Stamatellos@astro.cf.ac.uk
Anthony Whitworth
School of Physics and Astronomy, Cardiff University, UK
Tel:+44(0) 2920 874798
Fax:+44(0)2920 874056
Email: A.Whitworth@astro.cf.ac.uk

Anthony Whitworth | EurekAlert!
Further information:
http://www.astro.cf.ac.uk

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>