Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Award-winning supercomputer application solves superconductor puzzle

10.08.2010
Superconducting materials, which transmit power resistance-free, are found to perform optimally when high- and low-charge density varies on the nanoscale level, according to research performed at the Department of Energy's Oak Ridge National Laboratory.

In research toward better understanding the dynamics behind high-temperature superconductivity, the ORNL scientists rewrote computational code for the numerical Hubbard model that previously assumed copper-compound superconducting materials known as cuprates to be homogenous — the same electron density — from atom to atom.

Lead author Thomas Maier and colleagues Gonzalo Alvarez, Michael Summers and Thomas Schulthess received the Association for Computing Machinery Gordon Bell Prize two years ago for their high-performance computing application. The application has now been used to examine the nanoscale inhomogeneities in superconductors that had long been noticed but left unexplained.

The paper is published in Physical Review Letters.

"Cuprates and other chemical compounds used as superconductors require very cold temperatures, nearing absolute zero, to transition from a phase of resistance to no resistance," said Jack Wells, director of the Office of Institutional Planning and a former Computational Materials Sciences group leader.

Liquid nitrogen is used to cool superconductors into phase transition. The colder the conductive material has to get to reach the resistance-free superconductor phase, the less efficient and more costly are superconductor power infrastructures. Such infrastructures include those used on magnetic levitation trains, hospital Magnetic Resonance Imaging, particle accelerators and some city power utilities.

In angle-resolved photoemission experiments and transport studies on a cuprate material that exhibits striped electronic inhomogeneity, scientists for years observed that superconductivity is heavily affected by the nanoscale features and in some respect even optimized.

"The goal following the Gordon Bell Prize was to take that supercomputing application and learn whether these inhomogenous stripes increased or decreased the temperature required to reach transition," Wells said. "By discovering that striping leads to a strong increase in critical temperature, we can now ask the question: is there an optimal inhomogeneity?"

In an ideal world, a material could become superconductive at an easily achieved and maintained low temperature, eliminating much of the accompanying cost of the cooling infrastructure.

"The next step in our progress is a hard problem," Wells said. "But from our lab's point of view, all of the major tools suited for studying this phenomenon — the computational codes we've written, the neutron scattering experiments that allow us to examine nanoscale properties — are available to us here."

The Center for Nanophase Materials Sciences at ORNL is one of the five DOE Nanoscale Science Research Centers supported by the DOE Office of Science, premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit http://nano.energy.gov.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:

Twitter - http://twitter.com/oakridgelabnews

RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml

Flickr - http://www.flickr.com/photos/oakridgelab

YouTube - http://www.youtube.com/user/OakRidgeNationalLab

LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory

Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Image: http://www.ornl.gov/info/press_releases/photos/maier2010_4kx2k.jpg

Cutline: Researchers have found that atom clusters with inhomogenous stripes of lower density (shown in red) raise critical temperature needed to reach superconductor state.

Bill Cabage | EurekAlert!
Further information:
http://www.ornl.gov

Further reports about: Award-winning Materials Science NSRCs ORNL Oak Science TV superconducting material

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>