Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Avoiding an Asteroid Collision

TAU researchers reveal a new dimension in the study of asteroid pairs

Though it was once believed that all asteroids are giant pieces of solid rock, later hypotheses have it that some are actually a collection of small gravel-sized rocks, held together by gravity. If one of these "rubble piles" spins fast enough, it's speculated that pieces could separate from it through centrifugal force and form a second collection — in effect, a second asteroid.

Now researchers at Tel Aviv University, in collaboration with an international group of scientists, have proved the existence of these theoretical "separated asteroid" pairs.

Ph.D. student David Polishook of Tel Aviv University's Department of Geophysics and Planetary Sciences and his supervisor Dr. Noah Brosch of the university's School of Physics and Astronomy say the research has not only verified a theory, but could have greater implications if an asteroid passes close to earth. Instead of a solid mountain colliding with earth's surface, says Dr. Brosch, the planet would be pelted with the innumerable pebbles and rocks that comprise it, like a shotgun blast instead of a single cannonball. This knowledge could guide the defensive tactics to be taken if an asteroid were on track to collide with the Earth.

A large part of the research for the study, recently published in the journal Nature, was done at Tel Aviv University's Wise Observatory, located deep in the Negev Desert — the first and only modern astronomical observatory in the Middle East.

Spinning out in space

According to Dr. Brosch, separated asteroids are composed of small pebbles glued together by gravitational attraction. Their paths are affected by the gravitational pull of major planets, but the radiation of the sun, he says, can also have an immense impact. Once the sun's light is absorbed by the asteroid, rotation speeds up. When it reaches a certain speed, a piece will break off to form a separate asteroid.

The phenomenon can be compared to a figure skater on the ice. "The faster they spin, the harder it is for them to keep their arms close to their bodies," explains Dr. Brosch.

As a result, asteroid pairs are formed, characterized by the trajectory of their rotation around the sun. Though they may be millions of miles apart, the two asteroids share the same orbit. Dr. Brosch says this demonstrates that they come from the same original asteroid source.

Looking into the light

During the course of the study, Polishook and an international group of astronomers studied 35 asteroid pairs. Traditionally, measuring bodies in the solar system involves studying photographic images. But the small size and extreme distance of the asteroids forced researchers to measure these pairs in an innovative way.

Instead, researchers measured the light reflected from each member of the asteroid pairs. The results proved that in each asteroid pair, one body was formed from the other. The smaller asteroid, he explains, was always less than forty percent of the size of the bigger asteroid. These findings fit precisely into a theory developed at the University of Colorado at Boulder, which concluded that no more than forty percent of the original asteroid can split off.

With this study, says Dr. Brosch, researchers have been able to prove the connection between two separate spinning asteroids and demonstrate the existence of asteroids that exist in paired relationships.

George Hunka | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>