Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avatar's Moon Pandora Could Be Real

21.12.2009
In the new blockbuster Avatar, humans visit the habitable - and inhabited - alien moon called Pandora. Life-bearing moons like Pandora or the Star Wars forest moon of Endor are a staple of science fiction.

With NASA's Kepler mission showing the potential to detect Earth-sized objects, habitable moons may soon become science fact. If we find them nearby, a new paper by Smithsonian astronomer Lisa Kaltenegger shows that the James Webb Space Telescope (JWST) will be able to study their atmospheres and detect key gases like carbon dioxide, oxygen, and water vapor.

"If Pandora existed, we potentially could detect it and study its atmosphere in the next decade," said Lisa Kaltenegger of the Harvard-Smithsonian Center for Astrophysics (CfA).

So far, planet searches have spotted hundreds of Jupiter-sized objects in a range of orbits. Gas giants, while easier to detect, could not serve as homes for life as we know it. However, scientists have speculated whether a rocky moon orbiting a gas giant could be life-friendly, if that planet orbited within the star's habitable zone (the region warm enough for liquid water to exist).

"All of the gas giant planets in our solar system have rocky and icy moons," said Kaltenegger. "That raises the possibility that alien Jupiters will also have moons. Some of those may be Earth-sized and able to hold onto an atmosphere."

Kepler looks for planets that cross in front of their host stars, which creates a mini-eclipse and dims the star by a small but detectable amount. Such a transit lasts only hours and requires exact alignment of star and planet along our line of sight. Kepler will examine thousands of stars to find a few with transiting worlds.

Once they have found an alien Jupiter, astronomers can look for orbiting moons, or exomoons. A moon's gravity would tug on the planet and either speed or slow its transit, depending on whether the moon leads or trails the planet. The resulting transit duration variations would indicate the moon's existence.

Once a moon is found, the next obvious question would be: Does it have an atmosphere? If it does, those gases will absorb a fraction of the star's light during the transit, leaving a tiny, telltale fingerprint to the atmosphere's composition.

The signal is strongest for large worlds with hot, puffy atmospheres, but an Earth-sized moon could be studied if conditions are just right. For example, the separation of moon and planet needs to be large enough that we could catch just the moon in transit, while its planet is off to one side of the star.

Kaltenegger calculated what conditions are best for examining the atmospheres of alien moons. She found that alpha Centauri A, the system featured in Avatar, would be an excellent target.

"Alpha Centauri A is a bright, nearby star very similar to our Sun, so it gives us a strong signal" Kaltenegger explained. "You would only need a handful of transits to find water, oxygen, carbon dioxide, and methane on an Earth-like moon such as Pandora."

"If the Avatar movie is right in its vision, we could characterize that moon with JWST in the near future," she added.

While alpha Centauri A offers tantalizing possibilities, small, dim, red dwarf stars are better targets in the hunt for habitable planets or moons. The habitable zone for a red dwarf is closer to the star, which increases the probability of a transit.

Astronomers have debated whether tidal locking could be a problem for red dwarfs. A planet close enough to be in the habitable zone would also be close enough for the star's gravity to slow it until one side always faces the star. (The same process keeps one side of the Moon always facing Earth.) One side of the planet then would be baked in constant sunlight, while the other side would freeze in constant darkness.

An exomoon in the habitable zone wouldn't face this dilemma. The moon would be tidally locked to its planet, not to the star, and therefore would have regular day-night cycles just like Earth. Its atmosphere would moderate temperatures, and plant life would have a source of energy moon-wide.

"Alien moons orbiting gas giant planets may be more likely to be habitable than tidally locked Earth-sized planets or super-Earths," said Kaltenegger. "We should certainly keep them in mind as we work toward the ultimate goal of finding alien life."Headquartered in Cambridge, Mass., the Harvard-Smithsonian Center for Astrophysics (CfA) is a joint collaboration between the Smithsonian Astrophysical Observatory and the Harvard College Observatory. CfA scientists, organized into six research divisions, study the origin, evolution and ultimate fate of the universe.

For more information, contact:

Lisa Kaltenegger
617-495-7158
617-838-2808
lkaltene@cfa.harvard.edu
David A. Aguilar
Director of Public Affairs
Harvard-Smithsonian Center for Astrophysics
617-495-7462
daguilar@cfa.harvard.edu
Christine Pulliam
Public Affairs Specialist
Harvard-Smithsonian Center for Astrophysics
617-495-7463
cpulliam@cfa.harvard.edu

Lisa Kaltenegger | EurekAlert!
Further information:
http://www.harvard.edu

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>