Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Avalanches – triggered from the valley

03.12.2008
When slab avalanches thunder into the valley, winter sports fans are in danger. Researchers have now gained amazing insights into the formation of these avalanches – especially regarding how they are remotely triggered by skiers in more gently inclined areas.

Everybody knows that skiers swishing down steep slopes can cause extensive slab avalanches. But there is a less well known phenomenon: A person skiing a gentle slope in the valley triggers a slab avalanche on a steeper slope, sometimes several hundred meters further uphill. This scenario doesn’t seem to make sense – yet it claims human lives year after year.

But what exactly happens when an avalanche is remotely triggered? “In a slab avalanche, the upper layer of snow slides down into the valley. For that to be able to happen, it first has to become detached from the layer beneath it,” says Prof. Dr. Peter Gumbsch, director of the Fraunhofer Institute for Mechanics of Materials IWM in Freiburg. The view commonly held until now assumes that the layers of snow are separated by shear cracks – the upper layer shifts within a limited area. If the two layers of snow were two hands placed palm to palm, a shear crack would be equivalent to rubbing one hand against the other. The layers of snow can only shift if the slope is steep enough. Shear cracks may be a satisfactory explanation for the breakaway of snow slabs in steep terrain. But how can they be triggered from a distance?

Gumbsch and his colleagues Michael Zaiser and Joachim Heierli at the University of Edinburgh, Scotland, have developed a physical model that explains this phenomenon. “The boundary layer that connects the upper and lower layers of snow is made of ice crystals with fairly large interstices,” explains Heierli. The pressure exerted by a skier can cause the ice crystals to break, separate from one another and slip into the interstices – the layer collapses. The layer on top of it subsides. This mass collapse, which can be described as an anti-crack, releases energy that has not previously been taken into account. This energy enables the crack to propagate.

To return to our previous analogy, the anti-crack would be like pressing the two hands together. Experiments carried out by Canadian researchers at the University of Calgary confirm the theory: Whether the slope is gentle or steep, it is equally difficult to trigger the collapse. Once it has started, it propagates as an anti-crack.

It can move up or down the mountain and grow to a length of several hundred meters within a few seconds: The layers of snow lose their cohesion. Only the forces of friction can then prevent the snow from slipping. If these are insufficient, the upper layer slides off and a slab avalanche begins.

Prof. Dr. Peter Gumbsch | alfa
Further information:
http://www.iwm.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2008/12/ResearchNews122008Topic1.jsp
http://www.fraunhofer.de/EN/bigimg/2008/rn12fo1g1.jsp

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>