Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Australian physicists cast new light on spin-bowling

05.07.2013
As the Ashes series gets underway next week, a pair of brothers from Australia have been exploring the physics behind the spin of a cricket ball.

While physicists are much more accustomed to measuring the spin of electrons, protons and neutrons, Garry and Ian Robinson, Honorary Visiting Fellows at the University of New South Wales and the University of Melbourne respectively, have presented equations that govern the trajectory of a spinning ball as it moves through the air in the presence of a wind.

Their paper has been published today, 5 July, in Physica Scripta -- a journal published by IOP Publishing on behalf of the Royal Swedish Academy of Sciences for the Science Academies and the Physical Societies of the Nordic Countries.

If the English and Australian cricketers are looking to take advantage of their results then they will be hoping that the unpredictable British weather brings plenty of wind throughout the five-game series, as the researchers have calculated that it can have a profound effect on the movement through the air of a spin-bowler's delivery.

According to the research, the presence of a cross-wind from either side of the cricket pitch can cause the spinning ball to either slightly "hold up" or "dip", depending on which direction the wind comes from and which way the ball is spinning. This therefore changes the point at which the ball pitches on the wicket.

Garry Robinson said: "Our results show that the effects on a spinning ball are not purely due to the wind holding the ball up, since a reversal of wind direction can cause the ball to dip instead. These trajectory changes are due to the combination of the wind and the spin of the ball.

"The effects of spin in the presence of a cross-wind, and how to fully exploit it, may or may not be completely appreciated by spin bowlers. Either way, we have provided a mathematical model for the situation, although the model of course awaits detailed comparison with observations."

As an example, the researchers show that when a 14 km/h cross-wind interacts with the spinning ball, the point at which it hits the ground can change by around 14 cm, which they believe may be enough to deceive a batsman.

The equations take into account the speed of the ball, gravity, the drag force caused by air resistance, and the Magnus or "lift" force, while at the same time incorporating the important effect of wind.

The Magnus force is a commonly observed effect, particularly in ball sports, when the spin of a ball causes it to curve away from its set path. This is observed in football when players purposely put spin on the ball to make it bend around a defensive wall.

Once the equations were constructed, they were numerically solved using a computer software program called MATLAB; the solutions were then used to create illustrative examples for cricket.

The researchers also show that a spinning cricket ball tends to "drift" in the latter stages of its flight as it descends, moving further to the off-side for an off-spinning delivery and moving further towards the leg-side for a leg-spinning delivery, effects which are well-known and regularly utilised by spin-bowlers.

"We hope that this work can be used to cast new light on the motion of a spinning spherical object, particularly as applied to cricket, whilst also stirring the interests of students studying differential equations," Garry continued.

From Friday 5 July, this paper can be downloaded from http://iopscience.iop.org/1402-4896/88/1/018101.

Notes to Editors

Contact

1. For further information, a full draft of the journal paper or contact with one of the researchers, contact:

IOP Press Officer, Michael Bishop
Tel: 0117 930 1032
E-mail: Michael.bishop@iop.org
For more information on how to use the embargoed material above, please refer to our embargo policy.

IOP Publishing Journalist Area

2. The IOP Publishing Journalist Area gives journalists access to embargoed press releases, advanced copies of papers, supplementary images and videos. In addition to this, a weekly news digest is uploaded into the Journalist Area every Friday, highlighting a selection of newsworthy papers set to be published in the following week.

Login details also give free access to IOPscience, IOP Publishing's journal platform.

To apply for a free subscription to this service, please email Michael Bishop, IOP Press Officer, michael.bishop@iop.org, with your name, organisation, address and a preferred username.

The motion of an arbitrarily rotating spherical projectile and its application to ball games

3. The published version of the paper "The motion of an arbitrarily rotating spherical projectile and its application to ball games" (Robinson G and Robinson I 2013 Phys. Scr. 88 018101) will be freely available online from 5 July 2013. It will be available from http://iopscience.iop.org/1402-4896/88/1/018101.

Physica Scripta

4. Physica Scripta is published by the IOP on behalf of the Royal Swedish Academy of Sciences for the Science Academies and the Physical Societies of the Nordic Countries.

IOP Publishing

5. IOP Publishing provides a range of journals, magazines, websites and services that enable researchers and research organisations to reach the widest possible audience for their research.

We combine the culture of a learned society with global reach and highly efficient and effective publishing systems and processes. With offices in the UK, US, Germany, China and Japan, and staff in many other locations including Mexico and Russia, we serve researchers in the physical and related sciences in all parts of the world.

IOP Publishing is a wholly owned subsidiary of the Institute of Physics. The Institute is a leading scientific society promoting physics and bringing physicists together for the benefit of all. Any profits generated by IOP Publishing are used by the Institute to support science and scientists in both the developed and developing world. Go to ioppublishing.org.

The Institute of Physics

6. The Institute of Physics is a leading scientific society. We are a charitable organisation with a worldwide membership of more than 50,000, working together to advance physics education, research and application. We engage with policymakers and the general public to develop awareness and understanding of the value of physics and, through IOP Publishing, we are world leaders in professional scientific communications. Visit us at http://www.iop.org

Michael Bishop | EurekAlert!
Further information:
http://www.iop.org

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>