Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Attosecond flashes from solid-density relativistic plasmas

16.12.2008
MPQ scientists have demonstrated the generation of attosecond flashes with unprecedented intensity

Recent innovations in laser technology have provided radiation sources for attosecond (10 to the power of -18 sec) light flashes that can freeze the ultrafast motion of electrons inside atoms and molecules.

The range of possible applications is however limited by the low flux of the current attosecond sources. In a proof of principle experiment a team of MPQ scientists (Attosecond and High-Field Physics Division, Prof. Ferenc Krausz) has now demonstrated a novel way of generating attosecond light flashes with unprecedented intensity. The article by Y. Nomura et al., (Nature Physics, Advance Online Publication December 14, 2008, DOI 10.1038) confirms that relativistically driven overdense plasmas are able to convert infrared laser light into harmonic XUV radiation with high efficiency.

Furthermore it demonstrates the feasibility of confining unprecedented amounts of light energy to within less than one femtosecond. The long term goal - reaching sub-atomic resolution simultaneously in space and time - will have far-reaching impact, from physics and chemistry through biology and medicine to future information technologies.

State of the art technique for producing ultrashort coherent light pulses in the XUV spectral range is the method of generating "harmonics" by converting laser light travelling through a gas target to radiation whose frequency is an integer times the frequency of the fundamental oscillation. By contrast the scientists focus short laser pulses from the Titanium-Sapphire-Laser ATLAS (IR, 800 nm) onto a solid target creating an overdense plasma on its surface in which the electrons oscillate in the strong laser field with velocities close to the speed of light. Here two mechanisms give rise to harmonic generation. On the one hand the electrons reflect the incoming laser light causing (depending on their direction) a Doppler shift towards higher frequencies. On the other hand - and this process is the dominant one in this work - the electrons that are injected into the surface excite plasma waves in their wake. Under certain conditions these are converted to electromagnetic radiation at higher harmonics of the driver frequency. A spectral filter suppresses residual IR-light and selects a range of harmonics.

"There is no way to measure the time structure of the sequence of out coming attosecond flashes directly", says Dr. George Tsakiris, leader of the project. "We therefore have to resume to a trick: we let two replica of the attosecond pulse train interact with a Helium gas jet. By varying the time delay between them and recording the corresponding number of resulting Helium ions we can deduce the temporal structure of the XUV radiation." "We have demonstrated for the first time that the harmonics from solid targets are indeed emitted as a train of attosecond pulses", adds Rainer Hörlein, PhD student at the experiment.

More generally spoken the physicists have demonstrated the first alternative method to the generation of harmonics from noble gases for the production of attosecond pulses. In addition the pulses are orders of magnitude more intense than those generated with conventional methods. Unlike gas-harmonics the new method is expected to be highly scalable and to exhibit no limitation on the usable laser intensity: the higher the laser intensity the shorter and more energetic the attosecond pulses should be. Much more intense attosecond pulses will significantly increase the scope of possible experiments with attosecond resolution and will make pump-probe experiments with attosecond pulses feasible. [O.M.]

Original publication:
Y. Nomura, R. Hörlein, P. Tzallas, B. Dromey, S. Rykovanov, Zs. Major, J. Osterhoff, S. Karsch, L. Veisz, M. Zepf, D. Charalambidis, F. Krausz, and G. D. Tsakiris
"Attosecond phase locking of harmonics emitted from laser-produced plasmas"
Nature Physics, Advance Online Publication December 14th, 2008, DOI 10.1038
Contact:
Dr. George Tsakiris
Max Planck Institute of Quantum Optics
Hans Kopfermann Straße 1
85748 Garching
Phone: +49(0)89 32905 240
Fax: +49(0)89 32905 200
E-mail: george.tsakiris@mpq.mpg.de
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49(0)89 32905 213
Fax: +49(0)89 32905 200
E-mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Further information:
http://www.mpq.mpg.de

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>