Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Attosecond flashes from solid-density relativistic plasmas

MPQ scientists have demonstrated the generation of attosecond flashes with unprecedented intensity

Recent innovations in laser technology have provided radiation sources for attosecond (10 to the power of -18 sec) light flashes that can freeze the ultrafast motion of electrons inside atoms and molecules.

The range of possible applications is however limited by the low flux of the current attosecond sources. In a proof of principle experiment a team of MPQ scientists (Attosecond and High-Field Physics Division, Prof. Ferenc Krausz) has now demonstrated a novel way of generating attosecond light flashes with unprecedented intensity. The article by Y. Nomura et al., (Nature Physics, Advance Online Publication December 14, 2008, DOI 10.1038) confirms that relativistically driven overdense plasmas are able to convert infrared laser light into harmonic XUV radiation with high efficiency.

Furthermore it demonstrates the feasibility of confining unprecedented amounts of light energy to within less than one femtosecond. The long term goal - reaching sub-atomic resolution simultaneously in space and time - will have far-reaching impact, from physics and chemistry through biology and medicine to future information technologies.

State of the art technique for producing ultrashort coherent light pulses in the XUV spectral range is the method of generating "harmonics" by converting laser light travelling through a gas target to radiation whose frequency is an integer times the frequency of the fundamental oscillation. By contrast the scientists focus short laser pulses from the Titanium-Sapphire-Laser ATLAS (IR, 800 nm) onto a solid target creating an overdense plasma on its surface in which the electrons oscillate in the strong laser field with velocities close to the speed of light. Here two mechanisms give rise to harmonic generation. On the one hand the electrons reflect the incoming laser light causing (depending on their direction) a Doppler shift towards higher frequencies. On the other hand - and this process is the dominant one in this work - the electrons that are injected into the surface excite plasma waves in their wake. Under certain conditions these are converted to electromagnetic radiation at higher harmonics of the driver frequency. A spectral filter suppresses residual IR-light and selects a range of harmonics.

"There is no way to measure the time structure of the sequence of out coming attosecond flashes directly", says Dr. George Tsakiris, leader of the project. "We therefore have to resume to a trick: we let two replica of the attosecond pulse train interact with a Helium gas jet. By varying the time delay between them and recording the corresponding number of resulting Helium ions we can deduce the temporal structure of the XUV radiation." "We have demonstrated for the first time that the harmonics from solid targets are indeed emitted as a train of attosecond pulses", adds Rainer Hörlein, PhD student at the experiment.

More generally spoken the physicists have demonstrated the first alternative method to the generation of harmonics from noble gases for the production of attosecond pulses. In addition the pulses are orders of magnitude more intense than those generated with conventional methods. Unlike gas-harmonics the new method is expected to be highly scalable and to exhibit no limitation on the usable laser intensity: the higher the laser intensity the shorter and more energetic the attosecond pulses should be. Much more intense attosecond pulses will significantly increase the scope of possible experiments with attosecond resolution and will make pump-probe experiments with attosecond pulses feasible. [O.M.]

Original publication:
Y. Nomura, R. Hörlein, P. Tzallas, B. Dromey, S. Rykovanov, Zs. Major, J. Osterhoff, S. Karsch, L. Veisz, M. Zepf, D. Charalambidis, F. Krausz, and G. D. Tsakiris
"Attosecond phase locking of harmonics emitted from laser-produced plasmas"
Nature Physics, Advance Online Publication December 14th, 2008, DOI 10.1038
Dr. George Tsakiris
Max Planck Institute of Quantum Optics
Hans Kopfermann Straße 1
85748 Garching
Phone: +49(0)89 32905 240
Fax: +49(0)89 32905 200
Dr. Olivia Meyer-Streng
Press & Public Relations
Max Planck Institute of Quantum Optics
Phone: +49(0)89 32905 213
Fax: +49(0)89 32905 200

Dr. Olivia Meyer-Streng | Max-Planck-Gesellschaft
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>