Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Attosecond Electron Catapult

12.08.2015

A team of physicists and chemists from the University of Rostock, the Laboratory of Attosecond Physics at the Ludwig-Maximilians-Universität, the Max Planck Institute of Quantum Optics, and Freie Universität Berlin has studied the interaction of light with tiny glass particles.

The relationship between strong laser pulses and glass nanoparticles is a special one – one that could influence medical methods, as scientists from Rostock, Munich, and Berlin have discovered. The interplay between light and matter was studied by a team of physicists and chemists from the Laboratory of Attosecond Physics (LAP) at the Max Planck Institute of Quantum Optics (MPQ) and the Ludwig-Maximilians-Universität Munich (LMU), from the Institute of Physics of the University of Rostock, and from Freie Universität Berlin.


Directional electron acceleration on glass nanospheres. A femtosecond laser pulse (coming from the left) hits a glass nanosphere. The light releases electrons (green) from the group of atoms.

Picture: Martin Dulovits/woogieworks

The researchers studied the interaction between strong laser pulses and glass nanoparticles, which consist of multiple millions of atoms. Depending on how many atoms were contained in the nanoparticles, these objects reacted differently over attosecond timescales (an attosecond is a billionth of a billionth of a second).

Depending on their size, so called near-fields (electromagnetic fields close to the particle surface) were induced by the laser pulses, resulting in a controlled directional emission of electrons. These findings could eventually extend cancer therapy and imaging methods in medicine. The study was published in the latest issue of the journal Nature Communications.

Strong laser pulses have an extremely pronounced effect on nanoparticles. As soon as the atoms “feel” the electromagnetic wave of the light, their electrons start to oscillate. This produces near-fields at the surface of the particles. These near-fields have dimensions in the nanometer range, and oscillate in a characteristic fashion depending on the wavelength of the incident light.

Led by Prof. Matthias Kling, the LAP-physicists studied silica nanospheres with diameters of 50 to 550 nanometers, which were chemically synthesized in the research group around Eckart Rühl at Freie Universität Berlin.

The scientists let strong, approximately four-femtosecond-long laser pulses hit the group of atoms (a femtosecond is a millionth of a billionth of a second). As soon as the electromagnetic waves of the light field hit the nanospheres, near-fields formed at the surface and began to pulsate. The larger the light-irradiated spheres were compared to the laser wavelength (720 nanometers), the stronger the effect of the near-fields as an electron catapult.

The researchers observed this effect by using particle detectors to monitor the flight paths of electrons emitted from the near-fields of the nanospheres within the passage of the laser pulse. “The energy and direction of emitted electrons is strongly linked to the spatial and temporal structure of the near-fields. The emission of electrons is like a ping-pong game on the surface of the nanospheres that can be controlled with a precision of attoseconds,” explains Prof. Thomas Fennel from the University of Rostock.

He conducted simulations with his team, shedding light on the microscopic processes and their evolution in time. “First, the electrons leave the spheres, but they are then pulled back to their surface. After bouncing off the surface, they obtain a strong, final momentum kick from the near-field, which frees them from the nanoparticles,” Prof. Matthias Kling added.

Since the directional emission of particles can be controlled with this technique using laser light, the researchers argue that a long-term perspective could be medical applications. “With directional electron motion, strongly directed X-rays for imaging applications could be produced,” describes Prof. Eckart Rühl.

With sufficiently intense laser pulses, it may also be possible to release ions, which are charged atoms, from the nanocomposite, resulting in strongly directed ion radiation for cancer therapy. Furthermore, the technique might open up new perspectives for material processing beyond the diffraction limit – for instance in order to remove nanometer-sized areas from a surface.

The scientists also believe that the combination of strong light pulses and nanoparticles can become an important building block of future electronics. With so-called light wave electronics, one would be able to compute data at light wave frequency (about 1015 cycles per second): 100,000 times faster than currently possible. (Thorsten Naeser)

Original publication:
Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres.
F. Süßmann, L. Seiffert, S. Zherebtsov, V. Mondes, J. Stierle, M. Arbeiter, J. Plenge, P. Rupp, C. Peltz, A. Kessel, S.A. Trushin, B. Ahn, D. Kim, C. Graf., E. Rühl, M.F. Kling, T. Fennel.
Nature Communications, 12. August 2015, DOI: 10.1038/ncomms8944
(http://dx.doi.org/10.1038/ncomms8944)

Contacts for further information:

Prof. Dr. Matthias Kling
Ultrafast Nanophotonics Group, Laboratory for Attosecond Physics
Department of Physics, Am Coulombwall 1
85748 Garching, Germany
Phone: +49-89-32905-234
E-Mail: matthias.kling@physik.uni-munechen.de

Prof. Dr. Eckart Rühl
Institut für Chemie und Biochemie - Physikalische und Theoretische Chemie
Freie Universität Berlin
Takustr. 3
14195 Berlin, Germany
Phone: +49-30-838-52396
E-Mail: ruehl@zedat.fu-berlin.de

Prof. Dr. Thomas Fennel
Theoretical Cluster Physics and Nanophotonics Group
Institute of Physics, University of Rostock
18051 Rostock, Germany
Phone: +49-381-498-6815
E-Mail: thomas.fennel@uni-rostock.de

Ingrid Rieck | Universität Rostock
Further information:
http://www.uni-rostock.de

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>