Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic Nucleus with Halo: For the First Time, Scientists Measure the Size of a One-Neutron Halo with Lasers

20.02.2009
Atomic nucleus of beryllium is three times as large as normal due to halo / Publication in Physical Review Letters

Atomic nuclei are normally compact structures defined by a sharp border. About twenty-five years ago, it was discovered at the University of California in Berkeley that there are exceptions to this picture: Certain exotic atomic nuclei contain particles that shear off from the central core and create a cloud, which surrounds the central core like a 'heiligenschein' or halo.


The \'halo\' nucleus 11Be consists of a core of 10Be and loosely bound neutron. The neutron orbits at a mean distance of 7 fm from the center-of-mass. illustration: Dirk Tiedemann, Institute of Nuclear Chemistry

An example of such a halo occurs in beryllium-11, a specific isotope of the metal beryllium. Here, the halo is made up of a single neutron. For the first time ever, scientists at the Institute of Nuclear Chemistry of the Johannes Gutenberg University Mainz in cooperation with colleagues from other institutes have succeeded in precisely measuring this one-neutron halo by means of a laser, and in evaluating the dimensions of the cloud. By studying neutron halos, scientists hope to gain further understanding of the forces within the atomic nucleus that bind atoms together, taking into account the fact that the degree of displacement of halo neutrons from the atomic nuclear core is incompatible with the concepts of classical nuclear physics.

"We intuitively imagine the atomic nucleus as a compact sphere consisting of positively charged protons and uncharged neutrons," explains Dr Wilfried Nörtershäuser of the Institute of Nuclear Chemistry. "In fact, we have known since the 1980s that atomic nuclei of certain neutron-rich isotopes of the lightest elements - lithium, helium and beryllium - completely contradict this conception." These isotopes consist of a compact nuclear core and a cloud made of diluted nuclear material - called 'heiligenschein' or 'halo'. A halo consists mostly of neutrons that are very weakly bound to the nuclear core, "normally with only one-tenth of the usual binding energy of a neutron inside the core," explains Nörtershäuser.

The discovery of these exotic atomic nuclei created a new area of research, which Nörtershäuser as the head of a young investigators group funded by the German Helmholtz Association has pursued since 2005 at the University in Mainz and at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt. Measuring halo nuclei is extremely difficult, since they can only be artificially created in minute amounts. In addition, these synthesized nuclei decay within seconds, mostly even in milliseconds.

Nörtershäuser's team has now succeeded for the first time in measuring the nuclear charge radius in beryllium-11. This nucleus consists of a dense core with 4 protons and 6 neutrons and a single weakly bound neutron that forms the halo. In order to accomplish this ultra-precise laser spectroscopic measurement, the scientists used a method developed 30 years ago at the University of Mainz, but combined it now for the first time with the most modern techniques for precise laser frequency measurement, i.e., by employing an optical frequency comb. This combination alone was not sufficient, though. Only by further expanding the method using an additional laser system it was possible to achieve the right level of precision. The technique was then applied to beryllium isotopes at the Isotope Separator On Line (ISOLDE) facility for radioactive ion beams at the European Organization for Nuclear Research (CERN) in Geneva. The professional journal Physical Review Letters published this work in its latest February 13 issue.

The measurements revealed that the average distance between the halo neutrons and the dense core of the nucleus is 7 femtometers. Thus, the halo neutron is about three times as far from the dense core as is the outermost proton, since the core itself has a radius of only 2.5 femtometers. "This is an impressive direct demonstration of the halo character of this isotope. It is interesting that the halo neutron is thus much farther from the other nucleons than would be permissible according to the effective range of strong nuclear forces in the classical model," explains Nörtershäuser. The strong interaction that holds atoms together can only extend to a distance of between 2 to 3 femtometers. The riddle as to how the halo neutron can exist at such a great distance from the core nucleus can only be resolved by means of the principles of quantum mechanics: In this model, the neutron must be characterized in terms of a so-called wave function. Because of the low binding energy, the wave function only falls off very slowly with increasing distance from the core. Thus, it is highly likely that the neutron can expand into classically forbidden distances, thereby inducing the expansive 'heiligenschein'.

This work was supported by the Helmholtz Association, the GSI Darmstadt and the Federal Ministry of Education and Research (BMBF).

Original publication:
W. Nörtershäuser, D. Tiedemann, M. Žáková, Z. Andjelkovic, K. Blaum, M. L. Bissell, R. Cazan, G. W. F. Drake, Ch. Geppert, M. Kowalska, J. Krämer, A. Krieger, R. Neugart, R. Sánchez, F. Schmidt-Kaler, Z.-C. Yan, D. T. Yordanov, C. Zimmermann
Nuclear Charge Radii of 7,9,10Be and the One-Neutron Halo Nucleus 11Be
Physical Review Letters (Vol.102, No.6), February 13, 2009.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/13031.php

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>