Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic Nucleus with Halo: For the First Time, Scientists Measure the Size of a One-Neutron Halo with Lasers

20.02.2009
Atomic nucleus of beryllium is three times as large as normal due to halo / Publication in Physical Review Letters

Atomic nuclei are normally compact structures defined by a sharp border. About twenty-five years ago, it was discovered at the University of California in Berkeley that there are exceptions to this picture: Certain exotic atomic nuclei contain particles that shear off from the central core and create a cloud, which surrounds the central core like a 'heiligenschein' or halo.


The \'halo\' nucleus 11Be consists of a core of 10Be and loosely bound neutron. The neutron orbits at a mean distance of 7 fm from the center-of-mass. illustration: Dirk Tiedemann, Institute of Nuclear Chemistry

An example of such a halo occurs in beryllium-11, a specific isotope of the metal beryllium. Here, the halo is made up of a single neutron. For the first time ever, scientists at the Institute of Nuclear Chemistry of the Johannes Gutenberg University Mainz in cooperation with colleagues from other institutes have succeeded in precisely measuring this one-neutron halo by means of a laser, and in evaluating the dimensions of the cloud. By studying neutron halos, scientists hope to gain further understanding of the forces within the atomic nucleus that bind atoms together, taking into account the fact that the degree of displacement of halo neutrons from the atomic nuclear core is incompatible with the concepts of classical nuclear physics.

"We intuitively imagine the atomic nucleus as a compact sphere consisting of positively charged protons and uncharged neutrons," explains Dr Wilfried Nörtershäuser of the Institute of Nuclear Chemistry. "In fact, we have known since the 1980s that atomic nuclei of certain neutron-rich isotopes of the lightest elements - lithium, helium and beryllium - completely contradict this conception." These isotopes consist of a compact nuclear core and a cloud made of diluted nuclear material - called 'heiligenschein' or 'halo'. A halo consists mostly of neutrons that are very weakly bound to the nuclear core, "normally with only one-tenth of the usual binding energy of a neutron inside the core," explains Nörtershäuser.

The discovery of these exotic atomic nuclei created a new area of research, which Nörtershäuser as the head of a young investigators group funded by the German Helmholtz Association has pursued since 2005 at the University in Mainz and at the GSI Helmholtz Center for Heavy Ion Research in Darmstadt. Measuring halo nuclei is extremely difficult, since they can only be artificially created in minute amounts. In addition, these synthesized nuclei decay within seconds, mostly even in milliseconds.

Nörtershäuser's team has now succeeded for the first time in measuring the nuclear charge radius in beryllium-11. This nucleus consists of a dense core with 4 protons and 6 neutrons and a single weakly bound neutron that forms the halo. In order to accomplish this ultra-precise laser spectroscopic measurement, the scientists used a method developed 30 years ago at the University of Mainz, but combined it now for the first time with the most modern techniques for precise laser frequency measurement, i.e., by employing an optical frequency comb. This combination alone was not sufficient, though. Only by further expanding the method using an additional laser system it was possible to achieve the right level of precision. The technique was then applied to beryllium isotopes at the Isotope Separator On Line (ISOLDE) facility for radioactive ion beams at the European Organization for Nuclear Research (CERN) in Geneva. The professional journal Physical Review Letters published this work in its latest February 13 issue.

The measurements revealed that the average distance between the halo neutrons and the dense core of the nucleus is 7 femtometers. Thus, the halo neutron is about three times as far from the dense core as is the outermost proton, since the core itself has a radius of only 2.5 femtometers. "This is an impressive direct demonstration of the halo character of this isotope. It is interesting that the halo neutron is thus much farther from the other nucleons than would be permissible according to the effective range of strong nuclear forces in the classical model," explains Nörtershäuser. The strong interaction that holds atoms together can only extend to a distance of between 2 to 3 femtometers. The riddle as to how the halo neutron can exist at such a great distance from the core nucleus can only be resolved by means of the principles of quantum mechanics: In this model, the neutron must be characterized in terms of a so-called wave function. Because of the low binding energy, the wave function only falls off very slowly with increasing distance from the core. Thus, it is highly likely that the neutron can expand into classically forbidden distances, thereby inducing the expansive 'heiligenschein'.

This work was supported by the Helmholtz Association, the GSI Darmstadt and the Federal Ministry of Education and Research (BMBF).

Original publication:
W. Nörtershäuser, D. Tiedemann, M. Žáková, Z. Andjelkovic, K. Blaum, M. L. Bissell, R. Cazan, G. W. F. Drake, Ch. Geppert, M. Kowalska, J. Krämer, A. Krieger, R. Neugart, R. Sánchez, F. Schmidt-Kaler, Z.-C. Yan, D. T. Yordanov, C. Zimmermann
Nuclear Charge Radii of 7,9,10Be and the One-Neutron Halo Nucleus 11Be
Physical Review Letters (Vol.102, No.6), February 13, 2009.

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/13031.php

More articles from Physics and Astronomy:

nachricht NASA Protects its super heroes from space weather
17.08.2017 | NASA/Johnson Space Center

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

NASA Protects its super heroes from space weather

17.08.2017 | Physics and Astronomy

Spray-on electric rainbows: Making safer electrochromic inks

17.08.2017 | Materials Sciences

Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

17.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>