Atmospheric pressure plasma jet from a grounded electrode

The researchers studied the mechanism of the jet, which differs from conventional APPJ applications that form at the active electrode.

“The ground electrode jets originate from a charge overflow and are powered by the dielectric barrier discharge between the electrodes,” say authors Nan Jiang and Zexian Cao of the Beijing National Laboratory for Condensed Matters in China. “They are therefore isolated from electrical breakdown when the jet approaches an object.”

This separation between the jet and active electrode, along with the ability to form a jet at lower voltages than conventional APPJs increases operator safety and opens up biomedical applications that would be dangerous otherwise.

By using narrow, transparent ground electrodes, the researchers found that the overflow jet begins to develop at the inner edge of the ground electrode, and propagates forward in the dielectric via surface microdischarge which, to the surprise of the authors, causes backstreaming of charges. The output characteristics of the jet can be tuned by adjusting the conditions of dielectric barrier discharge between the electrodes and by varying the width of the ground electrode.

“This allows a flexible, miniaturized design since it is the ground electrode that sits at the front part of the device,” says Cao. Further research will strive for a detailed understanding of the processes involved in the generation of such plasma jets, for example, the interplay of charged jet with the carrier gas flow, shown in the accompanying illustration.

The article, “Atmospheric Pressure Plasma Jets beyond Ground Electrode as Charge Overflow in a Dielectric Barrier Discharge Setup” by Nan Jiang, Ailing Ji and Zexian Cao will appear in the Journal of Applied Physics. See: http://jap.aip.org/resource/1/japiau/v108/i3/p033302_s1

ABOUT Journal of Applied Physics

Journal of Applied Physics is the American Institute of Physics' (AIP) archival journal for significant new results in applied physics; content is published online daily, collected into two online and printed issues per month (24 issues per year). The journal publishes articles that emphasize understanding of the physics underlying modern technology, but distinguished from technology on the one side and pure physics on the other. See: http://jap.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Media Contact

Jason Bardi EurekAlert!

More Information:

http://www.aip.org

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors