Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmospheric pressure plasma jet from a grounded electrode

25.08.2010
Because they are portable and easy to operate at ambient temperatures, cold atmospheric pressure plasma jets (APPJs) should find innovative applications in biomedicine, materials science and fabrication industries. Research reported in the Journal of Applied Physics investigates an APPJ that extends from the ground electrode of a circuit.

The researchers studied the mechanism of the jet, which differs from conventional APPJ applications that form at the active electrode.

"The ground electrode jets originate from a charge overflow and are powered by the dielectric barrier discharge between the electrodes," say authors Nan Jiang and Zexian Cao of the Beijing National Laboratory for Condensed Matters in China. "They are therefore isolated from electrical breakdown when the jet approaches an object."

This separation between the jet and active electrode, along with the ability to form a jet at lower voltages than conventional APPJs increases operator safety and opens up biomedical applications that would be dangerous otherwise.

By using narrow, transparent ground electrodes, the researchers found that the overflow jet begins to develop at the inner edge of the ground electrode, and propagates forward in the dielectric via surface microdischarge which, to the surprise of the authors, causes backstreaming of charges. The output characteristics of the jet can be tuned by adjusting the conditions of dielectric barrier discharge between the electrodes and by varying the width of the ground electrode.

"This allows a flexible, miniaturized design since it is the ground electrode that sits at the front part of the device," says Cao. Further research will strive for a detailed understanding of the processes involved in the generation of such plasma jets, for example, the interplay of charged jet with the carrier gas flow, shown in the accompanying illustration.

The article, "Atmospheric Pressure Plasma Jets beyond Ground Electrode as Charge Overflow in a Dielectric Barrier Discharge Setup" by Nan Jiang, Ailing Ji and Zexian Cao will appear in the Journal of Applied Physics. See: http://jap.aip.org/resource/1/japiau/v108/i3/p033302_s1

ABOUT Journal of Applied Physics

Journal of Applied Physics is the American Institute of Physics' (AIP) archival journal for significant new results in applied physics; content is published online daily, collected into two online and printed issues per month (24 issues per year). The journal publishes articles that emphasize understanding of the physics underlying modern technology, but distinguished from technology on the one side and pure physics on the other. See: http://jap.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>