Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmospheric pressure plasma jet from a grounded electrode

25.08.2010
Because they are portable and easy to operate at ambient temperatures, cold atmospheric pressure plasma jets (APPJs) should find innovative applications in biomedicine, materials science and fabrication industries. Research reported in the Journal of Applied Physics investigates an APPJ that extends from the ground electrode of a circuit.

The researchers studied the mechanism of the jet, which differs from conventional APPJ applications that form at the active electrode.

"The ground electrode jets originate from a charge overflow and are powered by the dielectric barrier discharge between the electrodes," say authors Nan Jiang and Zexian Cao of the Beijing National Laboratory for Condensed Matters in China. "They are therefore isolated from electrical breakdown when the jet approaches an object."

This separation between the jet and active electrode, along with the ability to form a jet at lower voltages than conventional APPJs increases operator safety and opens up biomedical applications that would be dangerous otherwise.

By using narrow, transparent ground electrodes, the researchers found that the overflow jet begins to develop at the inner edge of the ground electrode, and propagates forward in the dielectric via surface microdischarge which, to the surprise of the authors, causes backstreaming of charges. The output characteristics of the jet can be tuned by adjusting the conditions of dielectric barrier discharge between the electrodes and by varying the width of the ground electrode.

"This allows a flexible, miniaturized design since it is the ground electrode that sits at the front part of the device," says Cao. Further research will strive for a detailed understanding of the processes involved in the generation of such plasma jets, for example, the interplay of charged jet with the carrier gas flow, shown in the accompanying illustration.

The article, "Atmospheric Pressure Plasma Jets beyond Ground Electrode as Charge Overflow in a Dielectric Barrier Discharge Setup" by Nan Jiang, Ailing Ji and Zexian Cao will appear in the Journal of Applied Physics. See: http://jap.aip.org/resource/1/japiau/v108/i3/p033302_s1

ABOUT Journal of Applied Physics

Journal of Applied Physics is the American Institute of Physics' (AIP) archival journal for significant new results in applied physics; content is published online daily, collected into two online and printed issues per month (24 issues per year). The journal publishes articles that emphasize understanding of the physics underlying modern technology, but distinguished from technology on the one side and pure physics on the other. See: http://jap.aip.org/

ABOUT AIP

The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Bardi | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>