Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU instrument takes better look at Mars minerals

24.06.2009
A slow drift in the orbit of NASA's Mars Odyssey spacecraft that mission controllers started nine months ago is now giving an ASU instrument on the spacecraft a better and more sensitive view of minerals on the surface of Mars. The instrument is the Thermal Emission Imaging System (THEMIS), an infrared and visual camera operated by ASU's Mars Space Flight Facility.

The maneuver to change Odyssey's orbit began Sept. 30, 2008, and ended June 9, 2009, with a five-and-a-half-minute thruster firing. The rocket burn fixed the spacecraft's track so that THEMIS looks down on the planet at an earlier time of day, 3:45 in the afternoon instead of 5 p.m.

Odyssey's two-hour orbit is synchronized with the Sun, so that the local solar time on the ground remains the same whatever part of Mars the spacecraft is flying over. As Odyssey travels on its north-to-south leg over the day side, the local time below the spacecraft is now 3:45 pm; similarly, the local time is 3:45 a.m. under the spacecraft as it flies the south-to-north leg of each orbit on the night side.

Warmer ground means better data

"The new orbit means we can now get the type of high-quality data for the rest of Mars that we got for 10 or 20 percent of the planet during the early months of the mission," says Philip Christensen of ASU's School of Earth and Space Exploration, part of the College of Liberal Arts and Sciences. Christensen designed THEMIS and is the instrument's principal investigator.

One important finding based on early-mission THEMIS data was the discovery of chloride mineral deposits in the ancient southern highlands. These salt beds are possible relics of a warmer and wetter epoch on Mars and may have something to tell scientists about a Martian biosphere, past or present.

"Imaging Mars earlier in the afternoon means that THEMIS sees a warmer surface," explains Christensen. "And this makes a greater temperature difference with the nighttime measurements. The stronger contrast brings out more clearly the composition variations in the surface rocks."

In another operational change, Odyssey has begun in recent weeks to make observations other than straight downward-looking. This more-flexible targeting allows THEMIS to image some latitudes near the poles that never pass directly underneath the orbiter. In addition, the sideways views let THEMIS fill in more quickly gaps in coverage left by previous imaging, and they will also permit stereoscopic, three-dimensional images.

"At visual wavelengths, THEMIS has photographed about half the Martian surface," says Christensen. "We're really looking forward to filling the holes in the coverage."

Robert Burnham, robert.burnham@asu.edu
480-458-8207
School of Earth and Space Exploration

Robert Burnham | EurekAlert!
Further information:
http://www.asu.edu

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

On the way to developing a new active ingredient against chronic infections

21.08.2017 | Life Sciences

Smart Computers

21.08.2017 | Information Technology

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>