Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ASU instrument takes better look at Mars minerals

24.06.2009
A slow drift in the orbit of NASA's Mars Odyssey spacecraft that mission controllers started nine months ago is now giving an ASU instrument on the spacecraft a better and more sensitive view of minerals on the surface of Mars. The instrument is the Thermal Emission Imaging System (THEMIS), an infrared and visual camera operated by ASU's Mars Space Flight Facility.

The maneuver to change Odyssey's orbit began Sept. 30, 2008, and ended June 9, 2009, with a five-and-a-half-minute thruster firing. The rocket burn fixed the spacecraft's track so that THEMIS looks down on the planet at an earlier time of day, 3:45 in the afternoon instead of 5 p.m.

Odyssey's two-hour orbit is synchronized with the Sun, so that the local solar time on the ground remains the same whatever part of Mars the spacecraft is flying over. As Odyssey travels on its north-to-south leg over the day side, the local time below the spacecraft is now 3:45 pm; similarly, the local time is 3:45 a.m. under the spacecraft as it flies the south-to-north leg of each orbit on the night side.

Warmer ground means better data

"The new orbit means we can now get the type of high-quality data for the rest of Mars that we got for 10 or 20 percent of the planet during the early months of the mission," says Philip Christensen of ASU's School of Earth and Space Exploration, part of the College of Liberal Arts and Sciences. Christensen designed THEMIS and is the instrument's principal investigator.

One important finding based on early-mission THEMIS data was the discovery of chloride mineral deposits in the ancient southern highlands. These salt beds are possible relics of a warmer and wetter epoch on Mars and may have something to tell scientists about a Martian biosphere, past or present.

"Imaging Mars earlier in the afternoon means that THEMIS sees a warmer surface," explains Christensen. "And this makes a greater temperature difference with the nighttime measurements. The stronger contrast brings out more clearly the composition variations in the surface rocks."

In another operational change, Odyssey has begun in recent weeks to make observations other than straight downward-looking. This more-flexible targeting allows THEMIS to image some latitudes near the poles that never pass directly underneath the orbiter. In addition, the sideways views let THEMIS fill in more quickly gaps in coverage left by previous imaging, and they will also permit stereoscopic, three-dimensional images.

"At visual wavelengths, THEMIS has photographed about half the Martian surface," says Christensen. "We're really looking forward to filling the holes in the coverage."

Robert Burnham, robert.burnham@asu.edu
480-458-8207
School of Earth and Space Exploration

Robert Burnham | EurekAlert!
Further information:
http://www.asu.edu

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>