Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astrophysicists unwind "Cold Dark Matter Catastrophe" conundrum

For nearly twenty years scientists have been trying to resolve the discrepancy in the cold dark matter paradigm - the so-called "Cold Dark Matter catastrophe". Recently an international research group including physics professor Lucio Mayer from the University of Zurich has succeeded in unraveling this paradox in a simulation of bulgeless dwarf galaxy formation.

Cold Dark Matter - present day science is still in pursuit of a proof of its existence. Numerous astrophysical phenomena are only explainable by assuming its existence: the Cold Dark Matter (CDM) paradigm accounts, for instance, for the distribution of galaxies and of standard matter in the universe on large scales, i.e. on the order of billions of light years, and including the nature of the relic microwave background radiation from the Big Bang.

However, when applied to individual galaxies - dimensions of hundreds to ten thousand light years - the model breaks down, leading to inconsistencies with the observations of astronomers.

Predictions by the model suggest that the central regions of galaxies should rotate at greater speed than is effectively indicated by astronomical measurements. As a result, the model implies a significantly higher density of CDM at the galactic core than allowed by measurements. For nearly two decades astrophysicists, particle physicists and astronomers have struggled to resolve this "Cold Dark Matter catastrophe", as this discrepancy is called among specialists, and to propose an convincing explanation for the varying behavior of DM at different scales. To date all attempts at explanation have fallen short or led to further irresolvable discrepancies. An international research group including Professor Lucio Mayer of the University of Zurich as one of three project leaders has now succeeded in unraveling this conundrum using a highly sophisticated supercomputer simulation.

Simulation of standard matter

Mayer and his colleagues simulated the formation of disc dwarf galaxies, for which the "Cold Dark Matter catastrophe" is particularly severe. In contrast to their predecessors, for the first time they modeled not only the behavior of CDM as influenced solely by gravitation, but also the highly complex behavior of baryonic matter, as normal, visible matter is also called, down to the scale

at which star clusters form. At 83 percent, DM composes the vast majority of a galaxy, but is nevertheless also influenced by baryonic matter, as the researchers could now demonstrate in their publication in "Nature".

Thanks to the high resolution simulations, which required the use of various supercomputers including one from NASA, Mayer and his colleagues could show with their model that during supernova explosions not only the interstellar gas but also CDM is pushed away from the core of a galaxy. In explosions of supernovae large quantities of normal, visible matter are removed from the galactic core in one blast: DM responds to the sudden change of the gravitational field by expanding away from the center and its density decreases. As a result the rotational velocity of the dwarf galaxy declines. Thus for the first time the simulated CDM paradigm and the nature of dwarf galaxies are in harmony - the apparent paradigmatic discrepancy is thereby resolved and the "Cold Dark Matter catastrophe" disappears.

Consequences for astrophysics and particle physics

These new findings bear consequences for particle physics and some of the methods employed for detecting DM particles. Among others the approach for demonstrating the presence of DM particles by means of their disintegration into gamma radiation is based on the density of DM in the core of galaxies. The simulation now predicts a significantly lower density of CDM than previously assumed at the core of dwarf galaxies, one of the targets of dark matter detection experiments. The anticipated radiation signals would therefore have to be weaker than formerly expected, requiring detectors of correspondingly greater sensitivity. Lucio Mayer, who holds an assistant professorship at the University of Zurich endowed by the Swiss National Science Foundation, will continue to work on the topic of "The Formation of Galaxies" in the future: one of his doctoral candidates, Simone Callegari, is already occupied with modeling the formation of massive disc galaxies resembling our own Milky Way galaxy.

F. Governato, C. Brook, L. Mayer, A. Brooks, G. Rhee, J. Wadsley, P. Jonsson, B. Willman, G. Stinson, T. Quinn and P. Madau: Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows, Nature, 14. January 2010
Prof. Dr. Lucio Mayer, University of Zurich, Theoretical Physics
Tel. +41 44 63 56197
Simulation "Formation of a bulgeless dwarf galaxy through multiple supernovae explosions"(Short film 32 seconds).
The animation shows a simulation of the formation of a dwarf galaxy, which is a close analog to observed dwarf galaxies in the Universe. It follows the evolution of the dark matter and baryonic matter in the current cosmological model (the Lambda-CDM model) in which most of the matter is

dark and most of the energy density is provided by a cosmological constant. The animation starts a few hundred thousand years after the Big Bang and ends at the present time.

Beat Müller | idw
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>