Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists unwind "Cold Dark Matter Catastrophe" conundrum

14.01.2010
For nearly twenty years scientists have been trying to resolve the discrepancy in the cold dark matter paradigm - the so-called "Cold Dark Matter catastrophe". Recently an international research group including physics professor Lucio Mayer from the University of Zurich has succeeded in unraveling this paradox in a simulation of bulgeless dwarf galaxy formation.

Cold Dark Matter - present day science is still in pursuit of a proof of its existence. Numerous astrophysical phenomena are only explainable by assuming its existence: the Cold Dark Matter (CDM) paradigm accounts, for instance, for the distribution of galaxies and of standard matter in the universe on large scales, i.e. on the order of billions of light years, and including the nature of the relic microwave background radiation from the Big Bang.

However, when applied to individual galaxies - dimensions of hundreds to ten thousand light years - the model breaks down, leading to inconsistencies with the observations of astronomers.

Predictions by the model suggest that the central regions of galaxies should rotate at greater speed than is effectively indicated by astronomical measurements. As a result, the model implies a significantly higher density of CDM at the galactic core than allowed by measurements. For nearly two decades astrophysicists, particle physicists and astronomers have struggled to resolve this "Cold Dark Matter catastrophe", as this discrepancy is called among specialists, and to propose an convincing explanation for the varying behavior of DM at different scales. To date all attempts at explanation have fallen short or led to further irresolvable discrepancies. An international research group including Professor Lucio Mayer of the University of Zurich as one of three project leaders has now succeeded in unraveling this conundrum using a highly sophisticated supercomputer simulation.

Simulation of standard matter

Mayer and his colleagues simulated the formation of disc dwarf galaxies, for which the "Cold Dark Matter catastrophe" is particularly severe. In contrast to their predecessors, for the first time they modeled not only the behavior of CDM as influenced solely by gravitation, but also the highly complex behavior of baryonic matter, as normal, visible matter is also called, down to the scale

at which star clusters form. At 83 percent, DM composes the vast majority of a galaxy, but is nevertheless also influenced by baryonic matter, as the researchers could now demonstrate in their publication in "Nature".

Thanks to the high resolution simulations, which required the use of various supercomputers including one from NASA, Mayer and his colleagues could show with their model that during supernova explosions not only the interstellar gas but also CDM is pushed away from the core of a galaxy. In explosions of supernovae large quantities of normal, visible matter are removed from the galactic core in one blast: DM responds to the sudden change of the gravitational field by expanding away from the center and its density decreases. As a result the rotational velocity of the dwarf galaxy declines. Thus for the first time the simulated CDM paradigm and the nature of dwarf galaxies are in harmony - the apparent paradigmatic discrepancy is thereby resolved and the "Cold Dark Matter catastrophe" disappears.

Consequences for astrophysics and particle physics

These new findings bear consequences for particle physics and some of the methods employed for detecting DM particles. Among others the approach for demonstrating the presence of DM particles by means of their disintegration into gamma radiation is based on the density of DM in the core of galaxies. The simulation now predicts a significantly lower density of CDM than previously assumed at the core of dwarf galaxies, one of the targets of dark matter detection experiments. The anticipated radiation signals would therefore have to be weaker than formerly expected, requiring detectors of correspondingly greater sensitivity. Lucio Mayer, who holds an assistant professorship at the University of Zurich endowed by the Swiss National Science Foundation, will continue to work on the topic of "The Formation of Galaxies" in the future: one of his doctoral candidates, Simone Callegari, is already occupied with modeling the formation of massive disc galaxies resembling our own Milky Way galaxy.

Literature:
F. Governato, C. Brook, L. Mayer, A. Brooks, G. Rhee, J. Wadsley, P. Jonsson, B. Willman, G. Stinson, T. Quinn and P. Madau: Bulgeless dwarf galaxies and dark matter cores from supernova-driven outflows, Nature, 14. January 2010
Contact:
Prof. Dr. Lucio Mayer, University of Zurich, Theoretical Physics
Tel. +41 44 63 56197
E-mail: lmayer@physik.uzh.ch
Downloads:
Simulation "Formation of a bulgeless dwarf galaxy through multiple supernovae explosions"(Short film 32 seconds).
http://dl.dropbox.com/u/1180829/h516.768gM.mpg
http://dl.dropbox.com/u/1180829/h799a2.mpg
The animation shows a simulation of the formation of a dwarf galaxy, which is a close analog to observed dwarf galaxies in the Universe. It follows the evolution of the dark matter and baryonic matter in the current cosmological model (the Lambda-CDM model) in which most of the matter is

dark and most of the energy density is provided by a cosmological constant. The animation starts a few hundred thousand years after the Big Bang and ends at the present time.

Beat Müller | idw
Further information:
http://dl.dropbox.com/u/1180829/h516.768gM.mpg
http://dl.dropbox.com/u/1180829/h799a2.mpg
http://www.uzh.ch/

More articles from Physics and Astronomy:

nachricht Four elements make 2-D optical platform
26.09.2017 | Rice University

nachricht The material that obscures supermassive black holes
26.09.2017 | Instituto de Astrofísica de Canarias (IAC)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>