Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists find wide binary stars wreak havoc in planetary systems

07.01.2013
An international team of astrophysicists has shown that planetary systems with very distant binary stars are particularly susceptible to violent disruptions, more so than if they had stellar companions with tighter orbits around them.

Unlike the Sun, many stars are members of binary star systems – where two stars orbit one another – and these stars' planetary systems can be altered by the gravity of their companion stars.

The orbits of very distant or wide stellar companions often become very eccentric – ie. less circular – over time, driving the once-distant star into a plunging orbit that passes very close to the planets once per orbital period. The gravity of this close-passing companion can then wreak havoc on planetary systems, triggering planetary scatterings and even ejections.

"The stellar orbits of wide binaries are very sensitive to disturbances from other passing stars as well as the tidal field of the Milky Way," said Nathan Kaib, lead author of a study published today in Nature describing the findings. "This causes their stellar orbits to constantly change their eccentricity – their degree of circularity. If a wide binary lasts long enough, it will eventually find itself with a very high orbital eccentricity at some point in its life."

When a wide binary orbit becomes very eccentric, the two stars will pass very close together once per orbit on one side of the orbital ellipse, while being very far apart on the other side of the ellipse. This can have dire consequences for planets in these systems since the gravity of a close-passing star can radically change planetary orbits around the other star, causing planets to scatter off of one another and sometimes get ejected to interstellar space.

Kaib, a postdoctoral fellow in the Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the Department of Physics and Astronomy at Northwestern University and a National Fellow in the Canadian Institute for Theoretical Astrophysics at the University of Toronto, conducted computer simulations of the process with Queen's University physics professor Martin Duncan and Sean N. Raymond, a researcher at the University of Bordeaux and the Centre national de la recherche scientifique in France. They added a a hypothetical wide binary companion to the Earth's solar system which eventually triggered at least one of four giant planets (Jupiter, Saturn, Uranus and Neptune) to be ejected in almost half of the simulations.

"This process takes hundreds of millions of years if not billions of years to occur in these binaries. Consequently, planets in these systems initially form and evolve as if they orbited an isolated star," said Kaib, who will present the findings this week at the 221st meeting of the American Astronomical Society in Long Beach, California. "It is only much later that they begin to feel the effects of their companion star, which often times leads to disruption of the planetary system."

"We also found that there is substantial evidence that this process occurs regularly in known extrasolar planetary systems," said Duncan. "Planets are believed to form on circular orbits, and they are only thought to attain highly eccentric orbits through powerful and/or violent perturbations. When we looked at the orbital eccentricities of planets that are known to reside in wide binaries, we found that they are statistically more eccentric than planets around isolated stars like our Sun. "

The researchers believe this is a telltale signature of past planetary scattering events, and that those with eccentric orbits are often interpreted to be the survivors of system-wide instabilities.

"The eccentric planetary orbits seen in these systems are essentially scars from past disruptions caused by the companion star," said Raymond.

The researchers note that this observational signature could only be reproduced well when they assumed that the typical planetary system extends from its host star as much as 10 times the distance between the Earth and the Sun. Otherwise, the planetary system is too compact to be affected by even a stellar companion on a very eccentric orbit.

"Recently, planets orbiting at wide distances around their host stars have been directly imaged. Our work predicts that such planets are common but have so far gone largely undetected," says Duncan.

Note to media: Visit www.artsci.utoronto.ca/main/media-releases/wide-binary-stars-study to view a simulation of the process described here.

MEDIA CONTACTS:

Nathan Kaib
Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University & Canadian Institute for Theoretical Astrophysics, University of Toronto
440-290-9387 (cell)
847-467-3017 (office)
nathan.kaib@northwestern.edu
Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
s.bettam@utoronto.ca
416-946-7950

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>