Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists from Clemson and Europe unmask a black hole

27.02.2012
A study of X-rays emitted a long time ago in a galaxy far, far away has unmasked a stellar mass black hole in Andromeda, a spiral galaxy about 2.6 million light-years from Earth.

Two Clemson University researchers joined an an international team of astronomers, including scientists at Germany's Max Planck Institute for Extraterrestrial Physics, in publishing their findings in a pair of scientific journals this week.

Scientists had suspected the black hole was possible since late 2009 when an X-ray satellite observatory operated by the Max Planck Institute detected an unusual X-ray transient light source in Andromeda.

"The brightness suggested that these X-rays belonged to the class of ultraluminous X-ray sources, or ULXs," said Amanpreet Kaur, a Clemson graduate student in physics and lead author of the paper published in the Astronomy & Astrophysics Journal. "But ULXs are rare. There are none at all in the Milky Way where Earth is located, and this is the first to be confirmed in Andromeda. Proving it required detailed observations."

Because ULX sources are rare — usually with just one or two in a galaxy, if they are present at all — there was very little data with which astronomers could make conjectures.

"There were two competing explanations for their high luminosities," said Clemson physics professor Dieter Hartmann, Kaur's mentor and a co-author of the paper. "Either a stellar mass black hole was accreting at extreme rates or there was a new subspecies of intermediate mass black holes accreting at lower rates. One of the greatest difficulties in attempting to find the right answer is the large distance to these objects, which makes detailed observations difficult or even impossible."

Working with scientists in Germany and Spain, the Clemson researchers studied data from the Chandra observatory and proved that the X-ray source was a stellar mass black hole that is swallowing material at very high rates.

Follow-up observations with the Swift and HST satellites yielded important complementary data, proving that it not only is the first ULX in Andromeda but also the closest ULX ever observed. Despite its great distance away, Andromeda is actually the nearest major galactic neighbor to our own Milky Way.

"We were very lucky that we caught the ULX early enough to see most of its light curve, which showed a very similar behavior to other X-ray sources from our own galaxy,” said Wolfgang Pietsch of the Max Planck Institute. The emission decayed exponentially with a characteristic timescale of about one month, which is a common property of stellar mass X-ray binaries. "This means that the ULX in Andromeda likely contains a normal, stellar black hole swallowing material at very high rates."

The emission of the ULX source, the scientists said, probably originates from a system similar to X-ray binaries in our own galaxy, but with matter accreting onto a black hole that is at least 13 times more massive than our Sun.

Unlike X-ray binaries in our own Milky Way, this source is much less obscured by interstellar gas and dust, allowing detailed investigations also at low X-ray energies.

Ideally, the astronomers would like to replicate their findings by re-observing the source in another outburst. However, if it is indeed similar to the X-ray binaries in our own Milky Way, they may be in for a long wait: Such outbursts can occur decades apart.

"On the other hand, as there are so many X-ray binaries in the Andromeda galaxy, another similar outbursting source could be captured any time by the ongoing monitoring campaign," Hartmann said. "While 'monitoring' may not sound exciting, the current results show that these programs are often blessed with discovery and lead to breakthroughs; in particular, if they are augmented with deep and sustained follow-up."

Dieter Hartmann | EurekAlert!
Further information:
http://www.clemson.edu

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>