Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astrophysicist: White dwarfs could be fertile ground for other Earths

Planet hunters have found hundreds of planets outside the solar system in the last decade, though it is unclear whether even one might be habitable. But it could be that the best place to look for planets that can support life is around dim, dying stars called white dwarfs.

In a new paper published online Tuesday in The Astrophysical Journal Letters, Eric Agol, a University of Washington associate professor of astronomy, suggests that potentially habitable planets orbiting white dwarfs could be much easier to find – if they exist – than other exoplanets located so far.

White dwarfs, cooling stars believed to be in the final stage of life, typically have about 60 percent of the mass of the sun, but by volume they are only about the size of Earth. Though born hot, they eventually become cooler than the sun and emit just a fraction of its energy, so the habitable zones for their planets are significantly closer than Earth is to the sun.

"If a planet is close enough to the star, it could have a stable temperature long enough to have liquid water at the surface – if it has water at all – and that's a big factor for habitability," Agol said.

A planet so close to its star could be observed using an Earth-based telescope as small as 1 meter across, as the planet passes in front of, and dims the light from, the white dwarf, he said.

White dwarfs evolve from stars like the sun. When such a star's core can no longer produce nuclear reactions that convert hydrogen to helium, it starts burning hydrogen outside the core. That begins the transformation to a red giant, with a greatly expanded outer atmosphere that typically envelops – and destroys – any planets as close as Earth.

Finally the star sheds its outer atmosphere, leaving the glowing, gradually cooling, core as a white dwarf, with a surface temperature around 5,000 degrees Celsius (about 9,000 degrees Fahrenheit). At that point, the star produces heat and light in the same way as a dying fireplace ember, though the star's ember could last for 3 billion years.

Once the red giant sheds its outer atmosphere, more distant planets that were beyond the reach of that atmosphere could begin to migrate closer to the white dwarf, Agol said. New planets also possibly could form from a ring of debris left behind by the star's transformation.

In either case, a planet would have to move very close to the white dwarf to be habitable, perhaps 500,000 to 2 million miles from the star. That's less than 1 percent of the distance from Earth to the sun (93 million miles) and substantially closer than Mercury is to the sun.

"From the planet, the star would appear slightly larger than our sun, because it is so close, and slightly more orange, but it would look very, very similar to our sun," Agol said.

The planet also would be tidally locked, so the same side would always face the star and the opposite side would always be in darkness. The likely areas for habitation, he said, might be toward the edges of the light zone, nearer the dark side of the planet.

The nearest white dwarf to Earth is Sirius B at a distance of about 8.5 light years (a light year is about 6 trillion miles). It is believed to once have been five times more massive than the sun, but now it has about the same mass as the sun packed into the same volume as Earth.

Agol is proposing a survey of the 20,000 white dwarfs closest to Earth. Using a 1-meter ground telescope, he said, one star could be surveyed in 32 hours of observation. If there is no telltale dimming of light from the star in that time, it means no planet orbiting closely enough to be habitable is passing in front of the star so that it is easily observable from Earth. Ideally, the work could be carried out by a network of telescopes that would make successive observations of a white dwarf as it progresses through the sky.

"This could take a huge amount of time, even with such a network," he said.

The same work could be accomplished by larger specialty telescopes, such as the Large Synoptic Survey Telescope that is planned for operations later this decade in Chile, of which the UW is a founding partner. If it turns out that the number of white dwarfs with potential Earthlike planets is very small – say one in 1,000 – that telescope still would be able to track them down efficiently.

Finding an Earthlike planet around a white dwarf could provide a meaningful place to look for life, Agol said. But it also would be a potential lifeboat for humanity if Earth, for some reason, becomes uninhabitable.

"Those are the reasons I find this project interesting," he said. "And there's also the question of, 'Just how special is Earth?'"

For more information, contact Agol at 206-543-7106 or

Vince Stricherz | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>