Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomy Tunes Into Radio "Jupiter"

27.08.2012
"PIRATE BROADCASTER" ON JUPITER - RADIO EMISSIONS CONCEAL SURPRISE

The discovery of a new radio emission from Jupiter is among the highlights of a three-year Austrian Science Fund FWF project. This project actually investigated the planetary radio-frequency emissions of the Earth and Saturn - and a strange radio emission from the planet Jupiter was discovered.

Further results of the project, which has now been completed, included the identification of a new modulation in terrestrial radio emissions, as well as analysis of particular components of Saturn´s radio emissions. External reviewers assessed the project as outstanding in the closing evaluation.

The Earth is loud. Radio-loud. That is how objects causing measurable radio emissions are described in astronomy. The Earth itself is one as well, whose magnet field influences charged particles (electrons, protons, and ions) in a way that causes radio emissions. Indeed, other planets such as Saturn or Jupiter cause these emissions as well. Measuring them allows us to draw conclusions about planetary magnetic fields. A project of the Austrian Science Fund FWF, carried out in Graz at the Space Research Institute (IWF) of the Austrian Academy of Sciences, had just this goal.

TUNED IN
The team headed by Prof. Helmut O. Rucker, Deputy Director and Research Director at the IWF, wanted to analyse specific radio emissions of the Earth and Saturn in cooperation with colleagues from the US and France. And, with the help of radio data from NASA´s space probes Stereo-A and Stereo-B, they were successful at this - although a "jammer" had been broadcasting into their work. According to Prof. Rucker: "In the course of the analysis, my colleague, Dr. Mykhaylo Panchenko, discovered a strange radio emission that originated from Jupiter - one which actually would not have been part of our project. That this emission remained undiscovered, despite 50 years of observing Jovian radio emissions, was reason enough for us to get to the bottom of it."

The striking thing about the emission in the decametre region (wavelengths of about 10 metres) was especially its periodicity, that is, the change in its intensity. Up to now, there were two known periods for the decametre emission of Jupiter: one that resulted from the rotation of Jupiter running at 9 hours, 55 minutes, 29.7 seconds (System III), as well as a one further that can be traced back to the influence of Jupiter´s moon Io on the magnetic field (42.46 hours). The newly discovered component in the radio emissions, with a period of about 10.07 hours, lay approx. 1.5 percent higher than the one produced by Jupiter´s rotation. Dr. Panchenko comments: "Our further analyses suggest that the source of this new radio-frequency component co-rotates with Jupiter. We suspect that the source of the emission lies in the vicinity of the plasma torus fed by Jupiter´s moon Io." This is a donut-shaped region around Jupiter that lies at the elevation of Io´s orbital plane and has been formed by volcanic material from this moon interacting with Jupiter´s magnetic field. This hypothesis about the source and questions about how the radio impulses are created now need to be clarified in future projects.

PROJECTS & PRODUCTS
Published in Geophysical Research Letters, the work about the discovery of the radio emissions represented an unexpected spin-off product for the FWF project. However, important progress was also made on the radio emissions work actually planned for Earth and Saturn. A distinct diurnal modulation could be established through analysis of the Stereo-A and Stereo-B data for auroral radio emissions of Earth in the kilometre wavelength. In addition, in-flight calibration of the stereo antenna system based on specialised mathematical techniques proved successful. This facilitated an exact characterisation of the reception behaviour of this system. Additionally, accurate analyses of the modulations for Saturn´s kilometre-wavelength radio emissions were completed.

Prof. Rucker´s view on the extension of the project: "Basic research lives from the unexpected. Thanks to the flexibility of the FWF, it was possible for us to meet scientific surprise with solid data analysis." A fact that the project´s international evaluators appreciated, when they provided assessments of ´outstanding´ in the final report.

Original publication: New periodicity in Jovian decametric radio emission, M. Panchenko, H. O. Rucker, M. L. Kaiser, O. C. St. Cyr, J.-L. Bougeret, K. Goetz and S. D. Bale. Geophysical Research Letters, VOL. 37, L05106, DOI: 10. 1029/2010GL042488, 2010

Image and text available from Monday, 27 August 2012, at 09.00 CET at:
http://www.fwf.ac.at/en/public_relations/press/pv201208-en.html
Scientific contact:
Prof. Helmut O. Rucker
Space Research Institute (IWF) of the Austrian Academy of Sciences Schmiedlstraße 6
8042 Graz, Austria
T +43 / (0)316 / 4120 - 601
E helmut.rucker@oeaw.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for
Research & Development Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Margot Pechtigam | PR&D
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv201208-en.html

More articles from Physics and Astronomy:

nachricht Enhancing the quantum sensing capabilities of diamond
23.11.2017 | The Hebrew University of Jerusalem

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Desert ants cannot be fooled

23.11.2017 | Life Sciences

By saving cost and energy, the lighting revolution may increase light pollution

23.11.2017 | Earth Sciences

Retreating permafrost coasts threaten the fragile Arctic environment

23.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>