Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomy Tunes Into Radio "Jupiter"

27.08.2012
"PIRATE BROADCASTER" ON JUPITER - RADIO EMISSIONS CONCEAL SURPRISE

The discovery of a new radio emission from Jupiter is among the highlights of a three-year Austrian Science Fund FWF project. This project actually investigated the planetary radio-frequency emissions of the Earth and Saturn - and a strange radio emission from the planet Jupiter was discovered.

Further results of the project, which has now been completed, included the identification of a new modulation in terrestrial radio emissions, as well as analysis of particular components of Saturn´s radio emissions. External reviewers assessed the project as outstanding in the closing evaluation.

The Earth is loud. Radio-loud. That is how objects causing measurable radio emissions are described in astronomy. The Earth itself is one as well, whose magnet field influences charged particles (electrons, protons, and ions) in a way that causes radio emissions. Indeed, other planets such as Saturn or Jupiter cause these emissions as well. Measuring them allows us to draw conclusions about planetary magnetic fields. A project of the Austrian Science Fund FWF, carried out in Graz at the Space Research Institute (IWF) of the Austrian Academy of Sciences, had just this goal.

TUNED IN
The team headed by Prof. Helmut O. Rucker, Deputy Director and Research Director at the IWF, wanted to analyse specific radio emissions of the Earth and Saturn in cooperation with colleagues from the US and France. And, with the help of radio data from NASA´s space probes Stereo-A and Stereo-B, they were successful at this - although a "jammer" had been broadcasting into their work. According to Prof. Rucker: "In the course of the analysis, my colleague, Dr. Mykhaylo Panchenko, discovered a strange radio emission that originated from Jupiter - one which actually would not have been part of our project. That this emission remained undiscovered, despite 50 years of observing Jovian radio emissions, was reason enough for us to get to the bottom of it."

The striking thing about the emission in the decametre region (wavelengths of about 10 metres) was especially its periodicity, that is, the change in its intensity. Up to now, there were two known periods for the decametre emission of Jupiter: one that resulted from the rotation of Jupiter running at 9 hours, 55 minutes, 29.7 seconds (System III), as well as a one further that can be traced back to the influence of Jupiter´s moon Io on the magnetic field (42.46 hours). The newly discovered component in the radio emissions, with a period of about 10.07 hours, lay approx. 1.5 percent higher than the one produced by Jupiter´s rotation. Dr. Panchenko comments: "Our further analyses suggest that the source of this new radio-frequency component co-rotates with Jupiter. We suspect that the source of the emission lies in the vicinity of the plasma torus fed by Jupiter´s moon Io." This is a donut-shaped region around Jupiter that lies at the elevation of Io´s orbital plane and has been formed by volcanic material from this moon interacting with Jupiter´s magnetic field. This hypothesis about the source and questions about how the radio impulses are created now need to be clarified in future projects.

PROJECTS & PRODUCTS
Published in Geophysical Research Letters, the work about the discovery of the radio emissions represented an unexpected spin-off product for the FWF project. However, important progress was also made on the radio emissions work actually planned for Earth and Saturn. A distinct diurnal modulation could be established through analysis of the Stereo-A and Stereo-B data for auroral radio emissions of Earth in the kilometre wavelength. In addition, in-flight calibration of the stereo antenna system based on specialised mathematical techniques proved successful. This facilitated an exact characterisation of the reception behaviour of this system. Additionally, accurate analyses of the modulations for Saturn´s kilometre-wavelength radio emissions were completed.

Prof. Rucker´s view on the extension of the project: "Basic research lives from the unexpected. Thanks to the flexibility of the FWF, it was possible for us to meet scientific surprise with solid data analysis." A fact that the project´s international evaluators appreciated, when they provided assessments of ´outstanding´ in the final report.

Original publication: New periodicity in Jovian decametric radio emission, M. Panchenko, H. O. Rucker, M. L. Kaiser, O. C. St. Cyr, J.-L. Bougeret, K. Goetz and S. D. Bale. Geophysical Research Letters, VOL. 37, L05106, DOI: 10. 1029/2010GL042488, 2010

Image and text available from Monday, 27 August 2012, at 09.00 CET at:
http://www.fwf.ac.at/en/public_relations/press/pv201208-en.html
Scientific contact:
Prof. Helmut O. Rucker
Space Research Institute (IWF) of the Austrian Academy of Sciences Schmiedlstraße 6
8042 Graz, Austria
T +43 / (0)316 / 4120 - 601
E helmut.rucker@oeaw.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for
Research & Development Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Margot Pechtigam | PR&D
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv201208-en.html

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>