Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomy Tunes Into Radio "Jupiter"

27.08.2012
"PIRATE BROADCASTER" ON JUPITER - RADIO EMISSIONS CONCEAL SURPRISE

The discovery of a new radio emission from Jupiter is among the highlights of a three-year Austrian Science Fund FWF project. This project actually investigated the planetary radio-frequency emissions of the Earth and Saturn - and a strange radio emission from the planet Jupiter was discovered.

Further results of the project, which has now been completed, included the identification of a new modulation in terrestrial radio emissions, as well as analysis of particular components of Saturn´s radio emissions. External reviewers assessed the project as outstanding in the closing evaluation.

The Earth is loud. Radio-loud. That is how objects causing measurable radio emissions are described in astronomy. The Earth itself is one as well, whose magnet field influences charged particles (electrons, protons, and ions) in a way that causes radio emissions. Indeed, other planets such as Saturn or Jupiter cause these emissions as well. Measuring them allows us to draw conclusions about planetary magnetic fields. A project of the Austrian Science Fund FWF, carried out in Graz at the Space Research Institute (IWF) of the Austrian Academy of Sciences, had just this goal.

TUNED IN
The team headed by Prof. Helmut O. Rucker, Deputy Director and Research Director at the IWF, wanted to analyse specific radio emissions of the Earth and Saturn in cooperation with colleagues from the US and France. And, with the help of radio data from NASA´s space probes Stereo-A and Stereo-B, they were successful at this - although a "jammer" had been broadcasting into their work. According to Prof. Rucker: "In the course of the analysis, my colleague, Dr. Mykhaylo Panchenko, discovered a strange radio emission that originated from Jupiter - one which actually would not have been part of our project. That this emission remained undiscovered, despite 50 years of observing Jovian radio emissions, was reason enough for us to get to the bottom of it."

The striking thing about the emission in the decametre region (wavelengths of about 10 metres) was especially its periodicity, that is, the change in its intensity. Up to now, there were two known periods for the decametre emission of Jupiter: one that resulted from the rotation of Jupiter running at 9 hours, 55 minutes, 29.7 seconds (System III), as well as a one further that can be traced back to the influence of Jupiter´s moon Io on the magnetic field (42.46 hours). The newly discovered component in the radio emissions, with a period of about 10.07 hours, lay approx. 1.5 percent higher than the one produced by Jupiter´s rotation. Dr. Panchenko comments: "Our further analyses suggest that the source of this new radio-frequency component co-rotates with Jupiter. We suspect that the source of the emission lies in the vicinity of the plasma torus fed by Jupiter´s moon Io." This is a donut-shaped region around Jupiter that lies at the elevation of Io´s orbital plane and has been formed by volcanic material from this moon interacting with Jupiter´s magnetic field. This hypothesis about the source and questions about how the radio impulses are created now need to be clarified in future projects.

PROJECTS & PRODUCTS
Published in Geophysical Research Letters, the work about the discovery of the radio emissions represented an unexpected spin-off product for the FWF project. However, important progress was also made on the radio emissions work actually planned for Earth and Saturn. A distinct diurnal modulation could be established through analysis of the Stereo-A and Stereo-B data for auroral radio emissions of Earth in the kilometre wavelength. In addition, in-flight calibration of the stereo antenna system based on specialised mathematical techniques proved successful. This facilitated an exact characterisation of the reception behaviour of this system. Additionally, accurate analyses of the modulations for Saturn´s kilometre-wavelength radio emissions were completed.

Prof. Rucker´s view on the extension of the project: "Basic research lives from the unexpected. Thanks to the flexibility of the FWF, it was possible for us to meet scientific surprise with solid data analysis." A fact that the project´s international evaluators appreciated, when they provided assessments of ´outstanding´ in the final report.

Original publication: New periodicity in Jovian decametric radio emission, M. Panchenko, H. O. Rucker, M. L. Kaiser, O. C. St. Cyr, J.-L. Bougeret, K. Goetz and S. D. Bale. Geophysical Research Letters, VOL. 37, L05106, DOI: 10. 1029/2010GL042488, 2010

Image and text available from Monday, 27 August 2012, at 09.00 CET at:
http://www.fwf.ac.at/en/public_relations/press/pv201208-en.html
Scientific contact:
Prof. Helmut O. Rucker
Space Research Institute (IWF) of the Austrian Academy of Sciences Schmiedlstraße 6
8042 Graz, Austria
T +43 / (0)316 / 4120 - 601
E helmut.rucker@oeaw.ac.at
Austrian Science Fund FWF:
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Vienna, Austria
T +43 / (0)1 / 505 67 40 - 8111
E stefan.bernhardt@fwf.ac.at
W http://www.fwf.ac.at
Copy Editing & Distribution:
PR&D - Public Relations for
Research & Development Mariannengasse 8
1090 Vienna, Austria
T +43 / (0)1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Margot Pechtigam | PR&D
Further information:
http://www.fwf.ac.at/en/public_relations/press/pv201208-en.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>