Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Witness Biggest Star Explosion, Massive Supernova

07.12.2009
What happens when a really gargantuan star – one hundreds of times bigger than our sun – blows up?

Although a theory developed years ago describes what the explosion of such an enormous star should look like, no one had actually observed one – until now.

An international team, led by scientists in Israel and including researchers from Germany, the US, the UK, and China, tracked a supernova – an exploding star – for over a year and a half, and found that it neatly fits the predictions for the explosion of a star greater than 150 times the sun’s mass. Their findings, which could influence our understanding of everything from natural limits on star size to the evolution of the universe, appeared recently in Nature.

“It’s all about balance,” says team leader Dr. Avishay Gal-Yam of the Weizmann Institute of Science’s Department of Particle Physics and Astrophysics. “During a star’s lifetime, there’s a balance between the gravity that pulls its material inward and the heat produced in the nuclear reaction at its core, pushing it out. In a supernova we’re familiar with, of a star 10 to 100 times the size of the sun, the nuclear reaction begins with the fusion of hydrogen into helium, as in our sun. But the fusion keeps going, producing heavier and heavier elements, until the core turns to iron. Since iron doesn’t fuse easily, the reaction burns out, and the balance is lost. Gravity takes over and the star collapses inward, throwing off its outer layers in the ensuing shockwaves.”

The balance in a super-giant star is different. Here, the photons (light particles) are so hot and energetic, they interact to produce pairs of particles: electrons and their opposites, positrons. In the process, particles with mass are created from the massless photons, and this consumes the star’s energy. Again, things are thrown out of balance, but this time, when the star collapses, it falls in on a core of volatile oxygen, rather than iron. The hot, compressed oxygen explodes in a runaway thermonuclear reaction that obliterates the star’s core, leaving behind little but glowing stardust. “Models of ‘pair supernovae’ had been calculated decades ago,” says Dr. Gal-Yam, “but no one was sure these huge explosions really occur in nature. The new supernova we discovered fits these models very well.”

An analysis of the new supernova data led the scientists to estimate the star’s size at around 200 times the mass of the sun. This in itself is unusual, as observers had noted that the stars in our part of the universe seem to have a size limit of about 150 suns; some had even wondered if there was a physical constraint on a star’s girth. The new findings suggest that hyper-giant stars, while rare, do exist, and that even larger stars, up to 1,000 times the size of the sun, may have existed in the early universe. “This is the first time we’ve been able to analyze observations of such a massive exploding star,” says Dr. Paolo Mazzali of the Max Planck Institute for Astrophysics in Germany, who led the theoretical study of this object. “We were able to measure the amounts of new elements created in this explosion, including approximately five times the mass of our sun in highly radioactive, freshly synthesized nickel. Such explosions may be important factories for heavy metals in the universe.”

This massive supernova was found in a tiny galaxy only a hundredth the size of our own, and the scientists think that such dwarf galaxies could be natural harbors for the giant stars, somehow enabling them to surpass the 150-sun limit.

“Our discovery and analysis of this unique explosion has given us new insights into just how massive stars can get and how these stellar giants contribute to the makeup of our universe,” says Dr. Gal-Yam. “We hope to understand even more when we find additional examples from new surveys that we have recently begun to carry out, covering large, previously unexplored areas of the universe.”

Dr. Avishay Gal-Yam’s research is supported by the Nella and Leon Benoziyo Center for Astrophysics; the Peter and Patricia Gruber Awards; the William Z. & Eda Bess Novick New Scientists Fund; the Legacy Heritage Fund Program of the Israel Science Foundation; and Miel de Botton Aynsley, UK.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Jennifer Manning | Newswise Science News
Further information:
http://www.acwis.org

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>