Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers get best view yet of infant stars at feeding time

13.10.2008
Tracing gas emission close to young stellar objects

Astronomers have used ESO's Very Large Telescope Interferometer to conduct the first high resolution survey that combines spectroscopy and interferometry on intermediate-mass infant stars.

They obtained a very precise view of the processes acting in the discs that feed stars as they form. These mechanisms include material infalling onto the star as well as gas being ejected, probably as a wind from the disc.

Infant stars form from a disc of gas and dust that surrounds the new star and, later, may also provide the material for a planetary system. Because the closest star-forming regions to us are about 500 light-years away, these discs appear very small on the sky, and their study requires special techniques to be able to probe the finer details.

This is best done with interferometry, a technique that combines the light of two or more telescopes so that the level of detail revealed corresponds to that which would be seen by a telescope with a diameter equal to the separation between the interferometer elements, typically 40 to 200 metres. ESO's Very Large Telescope Interferometer (VLTI) has allowed astronomers to reach a resolution of about a milli-arcsecond, an angle equivalent to the size of the full stop at the end of this sentence seen from a distance of about 50 kilometres.

"So far interferometry has mostly been used to probe the dust that closely surrounds young stars," says Eric Tatulli from Grenoble (France), who co-led this international project. "But dust is only one percent of the total mass of the discs. Their main component is gas, and its distribution may define the final architecture of planetary systems that are still forming."

The ability of the VLTI and the AMBER instrument to take spectra while probing objects at milli-arcsecond resolution has allowed astronomers to map the gas. Astronomers studied the inner gaseous environments of six young stars belonging to the family of Herbig Ae/Be objects. These objects have masses a few times that of our Sun and are still forming, increasing in mass by swallowing material from the surrounding disc.

The team used these observations to show that gas emission processes can be used to trace the physical processes acting close to the star.

"The origin of gas emissions from these young stars has been under debate until now, because in most earlier investigations of the gas component, the spatial resolution was not high enough to study the distribution of the gas close to the star," says co-leader Stefan Kraus from Bonn in Germany. "Astronomers had very different ideas about the physical processes that have been traced by the gas. By combining spectroscopy and interferometry, the VLTI has given us the opportunity to distinguish between the physical mechanisms responsible for the observed gas emission."

Astronomers have found evidence for matter falling into the star for two cases, and for mass outflow in four other stars, either in an extended stellar wind or in a disc wind.

It also seems that, for one of the stars, dust may be present closer to the star than had been generally expected. The dust is so close that the temperature should be high enough for it to evaporate, but since this is not observed, it must mean that gas shields the dust from the star's light.

These new observations demonstrate that it is now possible to study gas in the discs around young stars. This opens new perspectives for understanding this important phase in the life of a star.

"Future observations using VLTI spectro-interferometry will allow us to determine both the spatial distribution and motion of the gas, and might reveal whether the observed line emission is caused by a jet launched from the disc or by a stellar wind", concludes Stefan Kraus.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2008/pr-35-08.html

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>