Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers get sharpest view ever of star factories in distant universe

22.03.2010
Astronomers have combined a natural gravitational lens and a sophisticated telescope array to get the sharpest view ever of "star factories" in a galaxy over 10 billion light-years from Earth. They found that the distant galaxy, known as SMM J2135-0102, is making new stars 250 times faster than our Galaxy, the Milky Way.

They also pinpointed four discrete star-forming regions within the galaxy, each over 100 times brighter than locations (like the Orion Nebula) where stars form in our Galaxy. This is the first time that astronomers have been able to study properties of individual star-forming regions within a galaxy so far from Earth.

"To a layperson, our images appear fuzzy, but to us, they show the exquisite detail of a Faberge egg," said Steven Longmore of the Harvard-Smithsonian Center for Astrophysics (CfA). Longmore is an author of the paper describing these findings, which was published in the March 21st Nature online.

Due to the time it takes light to travel to us, we see the galaxy as it existed just 3 billion years after the Big Bang. It was Milky Way-sized at the time. If we could see it today, 10 billion years later, it would have grown into a giant elliptical galaxy much more massive than our own.

"This galaxy is like a teenager going through a growth spurt," said Mark Swinbank of Durham University, lead author on the paper. "If you could see it today as an 'adult,' you'd find the galactic equivalent of Yao Ming the basketball player."

Sharpest View

From our point of view, SMM J2135-0102 is located behind a massive cluster of nearby galaxies. The cluster's gravity acts as a lens to magnify the more distant galaxy by a factor of 16 in both apparent size and brightness, bringing otherwise imperceptible details to light.

The galaxy, while heavily obscured by dust at visible wavelengths, emits prodigious amounts of light at submillimeter wavelengths (close to the radio region of the spectrum). Indeed, it is the brightest known submillimeter galaxy, making it a natural target for the Submillimeter Array (SMA).

The SMA is an 8-element interferometer operating in the wavelength range of 0.3 to 2 millimeters, located atop Mauna Kea in Hawaii. Combined with the natural magnification of the gravitational lens, the array provided extremely high resolution observations - equivalent to using a telescope in Boston to spot a dime in Washington DC. This yielded a level of detail for a galaxy 10 billion light-years away comparable to the best observations of nearby starburst galaxies (which also show high rates of star formation).

Because of the obscuring dust, the galaxy's distance could not be determined by observations of visible light. For that task, the astronomers turned to a unique instrument, called the "Zpectrometer," on the National Science Foundation's Robert C. Byrd Green Bank Telescope. This instrument was able to determine the galaxy's distance by measuring radio emission from carbon monoxide molecules. The precise distance measurement allowed the scientists to determine "the exact effect that gravitational lensing would have on the galaxy, and therefore exactly how the galaxy would look in the absence of lensing," according to Andrew Baker, of Rutgers University.

Star Factories

The SMA data revealed four extremely bright star-forming regions. The large luminosities, 100 times greater than typical for nearby galaxies, imply a very high rate of star formation.

"We don't fully understand why the stars are forming so rapidly, but our result suggests that stars formed much more efficiently in the early universe than they do today," said Swinbank.

Their results provide new insight into a critical time during the Universe's history. SMM J2135-0102 is seen at the epoch when the majority of all stars were born, and therefore when many of the properties of nearby galaxies were defined. By studying it and other distant galaxies in the young Universe, astronomers hope to learn about the history of the Milky Way and other nearby galaxies.

Future surveys should identify more targets for study by the SMA and next-generation telescopes such as the Atacama Large Millimeter Array.

"That will allow us to test exactly how generic our results are: Is the star formation occurring within galaxies in the early Universe always so vigorous? Or are we catching this particular galaxy at a very special time?" said Longmore.

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>