Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers get sharpest view ever of star factories in distant universe

22.03.2010
Astronomers have combined a natural gravitational lens and a sophisticated telescope array to get the sharpest view ever of "star factories" in a galaxy over 10 billion light-years from Earth. They found that the distant galaxy, known as SMM J2135-0102, is making new stars 250 times faster than our Galaxy, the Milky Way.

They also pinpointed four discrete star-forming regions within the galaxy, each over 100 times brighter than locations (like the Orion Nebula) where stars form in our Galaxy. This is the first time that astronomers have been able to study properties of individual star-forming regions within a galaxy so far from Earth.

"To a layperson, our images appear fuzzy, but to us, they show the exquisite detail of a Faberge egg," said Steven Longmore of the Harvard-Smithsonian Center for Astrophysics (CfA). Longmore is an author of the paper describing these findings, which was published in the March 21st Nature online.

Due to the time it takes light to travel to us, we see the galaxy as it existed just 3 billion years after the Big Bang. It was Milky Way-sized at the time. If we could see it today, 10 billion years later, it would have grown into a giant elliptical galaxy much more massive than our own.

"This galaxy is like a teenager going through a growth spurt," said Mark Swinbank of Durham University, lead author on the paper. "If you could see it today as an 'adult,' you'd find the galactic equivalent of Yao Ming the basketball player."

Sharpest View

From our point of view, SMM J2135-0102 is located behind a massive cluster of nearby galaxies. The cluster's gravity acts as a lens to magnify the more distant galaxy by a factor of 16 in both apparent size and brightness, bringing otherwise imperceptible details to light.

The galaxy, while heavily obscured by dust at visible wavelengths, emits prodigious amounts of light at submillimeter wavelengths (close to the radio region of the spectrum). Indeed, it is the brightest known submillimeter galaxy, making it a natural target for the Submillimeter Array (SMA).

The SMA is an 8-element interferometer operating in the wavelength range of 0.3 to 2 millimeters, located atop Mauna Kea in Hawaii. Combined with the natural magnification of the gravitational lens, the array provided extremely high resolution observations - equivalent to using a telescope in Boston to spot a dime in Washington DC. This yielded a level of detail for a galaxy 10 billion light-years away comparable to the best observations of nearby starburst galaxies (which also show high rates of star formation).

Because of the obscuring dust, the galaxy's distance could not be determined by observations of visible light. For that task, the astronomers turned to a unique instrument, called the "Zpectrometer," on the National Science Foundation's Robert C. Byrd Green Bank Telescope. This instrument was able to determine the galaxy's distance by measuring radio emission from carbon monoxide molecules. The precise distance measurement allowed the scientists to determine "the exact effect that gravitational lensing would have on the galaxy, and therefore exactly how the galaxy would look in the absence of lensing," according to Andrew Baker, of Rutgers University.

Star Factories

The SMA data revealed four extremely bright star-forming regions. The large luminosities, 100 times greater than typical for nearby galaxies, imply a very high rate of star formation.

"We don't fully understand why the stars are forming so rapidly, but our result suggests that stars formed much more efficiently in the early universe than they do today," said Swinbank.

Their results provide new insight into a critical time during the Universe's history. SMM J2135-0102 is seen at the epoch when the majority of all stars were born, and therefore when many of the properties of nearby galaxies were defined. By studying it and other distant galaxies in the young Universe, astronomers hope to learn about the history of the Milky Way and other nearby galaxies.

Future surveys should identify more targets for study by the SMA and next-generation telescopes such as the Atacama Large Millimeter Array.

"That will allow us to test exactly how generic our results are: Is the star formation occurring within galaxies in the early Universe always so vigorous? Or are we catching this particular galaxy at a very special time?" said Longmore.

Christine Pulliam | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

nachricht CCNY physicists master unexplored electron property
26.07.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>