Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Reveal Galaxies’ Most Elusive Secrets

21.11.2011
New, high-precision equipment orbiting Earth aboard the Hubble Space Telescope is now sending such rich data back to astronomers, some feel they are crossing the final frontier toward understanding galaxy evolution, says Todd Tripp, leader of the team at the University of Massachusetts Amherst.

Galaxies are the birthplaces of stars, each with a dense, visible central core and a huge envelope, or halo, around it containing extremely low-density gases. Until now, most of the mass in the envelope, as much as 90 percent of all mass in a galaxy, was undetectable by any instrument on Earth.

But Hubble’s sensitive new Cosmic Origins Spectrograph (COS), the only one of its kind, has dramatically improved the quality of information regarding the gaseous envelope of galaxies, Tripp says. This huge gain in precision is one of the enormous accomplishments of the COS mission. “Even 10 years ago, most of the mass of a galaxy was invisible to us and such detailed investigations were impossible,” the UMass Amherst astronomer points out. “With COS, in a sense we now have the ability to see the rest of the iceberg, not just the tip. This is a very exciting time to be an astronomer.”

Tripp, postdoctoral researcher Joe Meiring and theoretical astronomer Neil Katz are co-authors of several companion articles reporting advances in understanding galaxy evolution based on the new COS data in the Nov. 18 issue of Science. Other lead investigators are Nicolas Lehner of the University of Notre Dame and Jason Tumlinson of the Space Telescope Science Institute, Baltimore.

“With the new spectrograph we can see galaxy halos out to at least 150,000 parsecs,” says Tripp. One kiloparsec is about 19 trillion miles. “Where once we saw only the framework we are now getting a more complete picture, including the composition and movement of gases in the envelope, varying temperatures in different locations and the chemical structure, all in incredible detail,” Tripp adds.

In particular, data on the chemical composition and temperature in the gas clouds allow the astronomers to calculate a galaxy’s halo mass and how the gaseous envelope regulates the galaxy’s evolution.

Another overall mission focus is to explore how galaxies gather mass for making stars. The astronomers have found that heavy elements in the envelopes surrounding the most vigorous star-forming galaxies continuously recycle material, as supernovae explode and shoot hot gas for trillions of miles. Faster-moving material escapes the envelope, but slower-moving particles collapse back into the center and restart the cycle.

Tripp and his UMass Amherst team specialize in studying how the fast-moving gases and matter from exploding supernovae circulate in galaxies. It was a surprise to discover how much mass extends far outside each galaxy, he says. “Not only have we found that star-forming galaxies are pervasively surrounded by large halos of hot gas,” says Tripp, “we have also observed that hot gas in transit. We have caught the stuff in the process of moving out of a galaxy and into intergalactic space.”

Further, the speed at which gases are moving in different parts of a galaxy is critical. Slower speeds may mean cooling gases, ready to collapse back into the core. Hotter gases are likely expanding and might escape the envelope.

Because the light emitted by this hot plasma is so faint that it is effectively invisible, astronomers use a trick to illuminate it from behind, like studying a misty fog bank by looking through lighthouse beams. In this case the lighthouse is usually a quasar, a super bright object behind the galaxy of interest. Gathering several sightings through the fog, scientists can piece together a map of the gaseous envelope.

Certain wavelengths of light emitted by the quasar are absorbed by the ions in a galaxy’s envelope. With COS, a whole new area of the electromagnetic spectrum has become visible. To learn more, Tripp and colleagues also calculate concentrations of the many elements such as hydrogen, oxygen, sulfur, carbon and neon in the envelope, plus up to five ions of each. One of the neon ions has turned out to be particularly important.

“In detecting the neon ions we find that there’s a lot of gas at several hundred thousand degrees Kelvin, which we’ve never been able to see unambiguously before,” says Tripp. “It means we can characterize the total mass distribution in the envelope, setting more precise constraints on the temperatures overall. We can now access more diverse ions, and we have new leverage on determining whether stuff is heating up or cooling off. We’re gaining new insights.”

The neon ion will also play a role in testing theoretical models of galaxy evolution. Theorists including Katz at UMass Amherst construct model galaxies on a computer, simulating its make-up and how it evolves over time. Tripp says, “Now we have hard data to plug into the model and test their ideas. They’ve got a lot of detailed predictions we can now compare to the real universe. It’s a new day for all of us.”

Todd Tripp
413/545-3070
tripp@astro.umass.edu

Todd Tripp | Newswise Science News
Further information:
http://www.umass.edu

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>