Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Reveal Galaxies’ Most Elusive Secrets

21.11.2011
New, high-precision equipment orbiting Earth aboard the Hubble Space Telescope is now sending such rich data back to astronomers, some feel they are crossing the final frontier toward understanding galaxy evolution, says Todd Tripp, leader of the team at the University of Massachusetts Amherst.

Galaxies are the birthplaces of stars, each with a dense, visible central core and a huge envelope, or halo, around it containing extremely low-density gases. Until now, most of the mass in the envelope, as much as 90 percent of all mass in a galaxy, was undetectable by any instrument on Earth.

But Hubble’s sensitive new Cosmic Origins Spectrograph (COS), the only one of its kind, has dramatically improved the quality of information regarding the gaseous envelope of galaxies, Tripp says. This huge gain in precision is one of the enormous accomplishments of the COS mission. “Even 10 years ago, most of the mass of a galaxy was invisible to us and such detailed investigations were impossible,” the UMass Amherst astronomer points out. “With COS, in a sense we now have the ability to see the rest of the iceberg, not just the tip. This is a very exciting time to be an astronomer.”

Tripp, postdoctoral researcher Joe Meiring and theoretical astronomer Neil Katz are co-authors of several companion articles reporting advances in understanding galaxy evolution based on the new COS data in the Nov. 18 issue of Science. Other lead investigators are Nicolas Lehner of the University of Notre Dame and Jason Tumlinson of the Space Telescope Science Institute, Baltimore.

“With the new spectrograph we can see galaxy halos out to at least 150,000 parsecs,” says Tripp. One kiloparsec is about 19 trillion miles. “Where once we saw only the framework we are now getting a more complete picture, including the composition and movement of gases in the envelope, varying temperatures in different locations and the chemical structure, all in incredible detail,” Tripp adds.

In particular, data on the chemical composition and temperature in the gas clouds allow the astronomers to calculate a galaxy’s halo mass and how the gaseous envelope regulates the galaxy’s evolution.

Another overall mission focus is to explore how galaxies gather mass for making stars. The astronomers have found that heavy elements in the envelopes surrounding the most vigorous star-forming galaxies continuously recycle material, as supernovae explode and shoot hot gas for trillions of miles. Faster-moving material escapes the envelope, but slower-moving particles collapse back into the center and restart the cycle.

Tripp and his UMass Amherst team specialize in studying how the fast-moving gases and matter from exploding supernovae circulate in galaxies. It was a surprise to discover how much mass extends far outside each galaxy, he says. “Not only have we found that star-forming galaxies are pervasively surrounded by large halos of hot gas,” says Tripp, “we have also observed that hot gas in transit. We have caught the stuff in the process of moving out of a galaxy and into intergalactic space.”

Further, the speed at which gases are moving in different parts of a galaxy is critical. Slower speeds may mean cooling gases, ready to collapse back into the core. Hotter gases are likely expanding and might escape the envelope.

Because the light emitted by this hot plasma is so faint that it is effectively invisible, astronomers use a trick to illuminate it from behind, like studying a misty fog bank by looking through lighthouse beams. In this case the lighthouse is usually a quasar, a super bright object behind the galaxy of interest. Gathering several sightings through the fog, scientists can piece together a map of the gaseous envelope.

Certain wavelengths of light emitted by the quasar are absorbed by the ions in a galaxy’s envelope. With COS, a whole new area of the electromagnetic spectrum has become visible. To learn more, Tripp and colleagues also calculate concentrations of the many elements such as hydrogen, oxygen, sulfur, carbon and neon in the envelope, plus up to five ions of each. One of the neon ions has turned out to be particularly important.

“In detecting the neon ions we find that there’s a lot of gas at several hundred thousand degrees Kelvin, which we’ve never been able to see unambiguously before,” says Tripp. “It means we can characterize the total mass distribution in the envelope, setting more precise constraints on the temperatures overall. We can now access more diverse ions, and we have new leverage on determining whether stuff is heating up or cooling off. We’re gaining new insights.”

The neon ion will also play a role in testing theoretical models of galaxy evolution. Theorists including Katz at UMass Amherst construct model galaxies on a computer, simulating its make-up and how it evolves over time. Tripp says, “Now we have hard data to plug into the model and test their ideas. They’ve got a lot of detailed predictions we can now compare to the real universe. It’s a new day for all of us.”

Todd Tripp
413/545-3070
tripp@astro.umass.edu

Todd Tripp | Newswise Science News
Further information:
http://www.umass.edu

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>