Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Reveal Galaxies’ Most Elusive Secrets

21.11.2011
New, high-precision equipment orbiting Earth aboard the Hubble Space Telescope is now sending such rich data back to astronomers, some feel they are crossing the final frontier toward understanding galaxy evolution, says Todd Tripp, leader of the team at the University of Massachusetts Amherst.

Galaxies are the birthplaces of stars, each with a dense, visible central core and a huge envelope, or halo, around it containing extremely low-density gases. Until now, most of the mass in the envelope, as much as 90 percent of all mass in a galaxy, was undetectable by any instrument on Earth.

But Hubble’s sensitive new Cosmic Origins Spectrograph (COS), the only one of its kind, has dramatically improved the quality of information regarding the gaseous envelope of galaxies, Tripp says. This huge gain in precision is one of the enormous accomplishments of the COS mission. “Even 10 years ago, most of the mass of a galaxy was invisible to us and such detailed investigations were impossible,” the UMass Amherst astronomer points out. “With COS, in a sense we now have the ability to see the rest of the iceberg, not just the tip. This is a very exciting time to be an astronomer.”

Tripp, postdoctoral researcher Joe Meiring and theoretical astronomer Neil Katz are co-authors of several companion articles reporting advances in understanding galaxy evolution based on the new COS data in the Nov. 18 issue of Science. Other lead investigators are Nicolas Lehner of the University of Notre Dame and Jason Tumlinson of the Space Telescope Science Institute, Baltimore.

“With the new spectrograph we can see galaxy halos out to at least 150,000 parsecs,” says Tripp. One kiloparsec is about 19 trillion miles. “Where once we saw only the framework we are now getting a more complete picture, including the composition and movement of gases in the envelope, varying temperatures in different locations and the chemical structure, all in incredible detail,” Tripp adds.

In particular, data on the chemical composition and temperature in the gas clouds allow the astronomers to calculate a galaxy’s halo mass and how the gaseous envelope regulates the galaxy’s evolution.

Another overall mission focus is to explore how galaxies gather mass for making stars. The astronomers have found that heavy elements in the envelopes surrounding the most vigorous star-forming galaxies continuously recycle material, as supernovae explode and shoot hot gas for trillions of miles. Faster-moving material escapes the envelope, but slower-moving particles collapse back into the center and restart the cycle.

Tripp and his UMass Amherst team specialize in studying how the fast-moving gases and matter from exploding supernovae circulate in galaxies. It was a surprise to discover how much mass extends far outside each galaxy, he says. “Not only have we found that star-forming galaxies are pervasively surrounded by large halos of hot gas,” says Tripp, “we have also observed that hot gas in transit. We have caught the stuff in the process of moving out of a galaxy and into intergalactic space.”

Further, the speed at which gases are moving in different parts of a galaxy is critical. Slower speeds may mean cooling gases, ready to collapse back into the core. Hotter gases are likely expanding and might escape the envelope.

Because the light emitted by this hot plasma is so faint that it is effectively invisible, astronomers use a trick to illuminate it from behind, like studying a misty fog bank by looking through lighthouse beams. In this case the lighthouse is usually a quasar, a super bright object behind the galaxy of interest. Gathering several sightings through the fog, scientists can piece together a map of the gaseous envelope.

Certain wavelengths of light emitted by the quasar are absorbed by the ions in a galaxy’s envelope. With COS, a whole new area of the electromagnetic spectrum has become visible. To learn more, Tripp and colleagues also calculate concentrations of the many elements such as hydrogen, oxygen, sulfur, carbon and neon in the envelope, plus up to five ions of each. One of the neon ions has turned out to be particularly important.

“In detecting the neon ions we find that there’s a lot of gas at several hundred thousand degrees Kelvin, which we’ve never been able to see unambiguously before,” says Tripp. “It means we can characterize the total mass distribution in the envelope, setting more precise constraints on the temperatures overall. We can now access more diverse ions, and we have new leverage on determining whether stuff is heating up or cooling off. We’re gaining new insights.”

The neon ion will also play a role in testing theoretical models of galaxy evolution. Theorists including Katz at UMass Amherst construct model galaxies on a computer, simulating its make-up and how it evolves over time. Tripp says, “Now we have hard data to plug into the model and test their ideas. They’ve got a lot of detailed predictions we can now compare to the real universe. It’s a new day for all of us.”

Todd Tripp
413/545-3070
tripp@astro.umass.edu

Todd Tripp | Newswise Science News
Further information:
http://www.umass.edu

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>