Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronomers release spectacular survey of the distant universe


Astronomers at The University of Nottingham have released spectacular new infrared images of the distant Universe, providing the deepest view ever obtained over a large area of sky. The team, led by Omar Almaini, Professor of Astrophysics in the School of Physics and Astronomy, is presenting their results at the National Astronomy Meeting taking place this week at the University's Jubilee Campus.

The final data release from the Ultra-Deep Survey (UDS) maps an area four times the size of the full Moon to unprecedented depth. Over 250,000 galaxies have been detected, including several hundred observed within the first billion years after the Big Bang. Astronomers around the world will use the new images to study the early stages of galaxy formation and evolution.

An image of a small section (0.4 percent) of the UDS field. Most of the objects in the image are very distant galaxies, observed as they were over 9 billion years ago. In the full image, 250,000 galaxies have been detected over an area of sky four times the size of the full moon.

Please credit: Omar Almaini, University of Nottingham.

The release of the final UDS images represents the culmination of a project that began taking data in 2005. The scientists used the United Kingdom Infrared Telescope (UKIRT) on Hawaii to observe the same patch of sky repeatedly, building up more than 1,000 hours of exposure time. Observing in the infrared is vital for studying the distant Universe, as ordinary starlight is "redshifted" to longer wavelengths due to the cosmological expansion of the Universe.

Because of the finite speed of light, the most distant galaxies are also observed very far back in time.

Professor Almaini, said: "With the UDS we can study distant galaxies in large numbers, and observe how they evolved at different stages in the history of the Universe. We see most of the galaxies in our image as they were billions of years before the Earth was formed."

The UDS is the deepest of five projects, collectively known as the UKIRT Infrared Deep Sky Survey (UKIDSS).

Earlier releases of data from the UDS have already produced a wide range of scientific advances, including studies of the earliest galaxies in the first billion years after the Big Bang, measurements of the build-up of galaxies through cosmic time, and studies of the large-scale distribution of galaxies to weigh the mysterious 'dark matter' that pervades the cosmos. The added depth from the new release is expected to produce many new breakthroughs.

Dr David Maltby, a postdoctoral research fellow at The University of Nottingham whose research focusses on morphological evolution of galaxies, said: "Here in Nottingham we are aiming to understand how galaxies evolved to produce the rich diversity we see today. For example, we still don't understand why the most massive galaxies are usually elliptical in shape, while less massive galaxies tend to be disk-shaped with spiral arms. By looking back in time to the early Universe we can catch these galaxies in their infancy, and observe them as they change and evolve over many billions of years."


Images are available.

An image of a small section (0.4 per cent) of the UDS field. Most of the objects in the image are very distant galaxies, observed as they were over 9 billion years ago. In the full image, 250,000 galaxies have been detected over an area of sky four times the size of the full Moon.

Please credit: Omar Almaini, University of Nottingham.


The 3.8-metre United Kingdom Infrared Telescope (UKIRT) is the world's second largest telescope dedicated to infrared astronomy. UKIRT is sited near the summit of Mauna Kea, Hawaii, at an altitude of 4,194 metres (13,760 feet) above sea level. The telescope was owned and operated by the UK Science and Technology Facilities Council until 2014, when ownership transferred to the University of Hawaii.


The UKIRT Infrared Deep Sky Survey (UKIDSS) is a large astronomical project that began in 2005, using most of the available observing time on the United Kingdom Infrared Telescope (UKIRT). UKIDSS consists of 5 separate surveys, from shallow mapping of large areas of sky to deeper studies of the distant Universe. The UDS is the deepest of the UKIDSS surveys.

Lindsay Brooke | EurekAlert!

Further reports about: Big Bang Galaxies Telescope astronomy distant galaxies massive galaxies

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>