Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers release spectacular survey of the distant universe

01.07.2016

Astronomers at The University of Nottingham have released spectacular new infrared images of the distant Universe, providing the deepest view ever obtained over a large area of sky. The team, led by Omar Almaini, Professor of Astrophysics in the School of Physics and Astronomy, is presenting their results at the National Astronomy Meeting taking place this week at the University's Jubilee Campus.

The final data release from the Ultra-Deep Survey (UDS) maps an area four times the size of the full Moon to unprecedented depth. Over 250,000 galaxies have been detected, including several hundred observed within the first billion years after the Big Bang. Astronomers around the world will use the new images to study the early stages of galaxy formation and evolution.


An image of a small section (0.4 percent) of the UDS field. Most of the objects in the image are very distant galaxies, observed as they were over 9 billion years ago. In the full image, 250,000 galaxies have been detected over an area of sky four times the size of the full moon.

Please credit: Omar Almaini, University of Nottingham.

The release of the final UDS images represents the culmination of a project that began taking data in 2005. The scientists used the United Kingdom Infrared Telescope (UKIRT) on Hawaii to observe the same patch of sky repeatedly, building up more than 1,000 hours of exposure time. Observing in the infrared is vital for studying the distant Universe, as ordinary starlight is "redshifted" to longer wavelengths due to the cosmological expansion of the Universe.

Because of the finite speed of light, the most distant galaxies are also observed very far back in time.

Professor Almaini, said: "With the UDS we can study distant galaxies in large numbers, and observe how they evolved at different stages in the history of the Universe. We see most of the galaxies in our image as they were billions of years before the Earth was formed."

The UDS is the deepest of five projects, collectively known as the UKIRT Infrared Deep Sky Survey (UKIDSS).

Earlier releases of data from the UDS have already produced a wide range of scientific advances, including studies of the earliest galaxies in the first billion years after the Big Bang, measurements of the build-up of galaxies through cosmic time, and studies of the large-scale distribution of galaxies to weigh the mysterious 'dark matter' that pervades the cosmos. The added depth from the new release is expected to produce many new breakthroughs.

Dr David Maltby, a postdoctoral research fellow at The University of Nottingham whose research focusses on morphological evolution of galaxies, said: "Here in Nottingham we are aiming to understand how galaxies evolved to produce the rich diversity we see today. For example, we still don't understand why the most massive galaxies are usually elliptical in shape, while less massive galaxies tend to be disk-shaped with spiral arms. By looking back in time to the early Universe we can catch these galaxies in their infancy, and observe them as they change and evolve over many billions of years."

###

Images are available.

An image of a small section (0.4 per cent) of the UDS field. Most of the objects in the image are very distant galaxies, observed as they were over 9 billion years ago. In the full image, 250,000 galaxies have been detected over an area of sky four times the size of the full Moon.

http://www.nottingham.ac.uk/astronomy/UDS/gallery/gallery-hidden.html

Please credit: Omar Almaini, University of Nottingham.

UKIRT

The 3.8-metre United Kingdom Infrared Telescope (UKIRT) is the world's second largest telescope dedicated to infrared astronomy. UKIRT is sited near the summit of Mauna Kea, Hawaii, at an altitude of 4,194 metres (13,760 feet) above sea level. The telescope was owned and operated by the UK Science and Technology Facilities Council until 2014, when ownership transferred to the University of Hawaii.

UKIDSS

The UKIRT Infrared Deep Sky Survey (UKIDSS) is a large astronomical project that began in 2005, using most of the available observing time on the United Kingdom Infrared Telescope (UKIRT). UKIDSS consists of 5 separate surveys, from shallow mapping of large areas of sky to deeper studies of the distant Universe. The UDS is the deepest of the UKIDSS surveys.

Lindsay Brooke | EurekAlert!

Further reports about: Big Bang Galaxies Telescope astronomy distant galaxies massive galaxies

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Efficient time synchronization of sensor networks by means of time series analysis

24.01.2017 | Information Technology

Immune Defense Without Collateral Damage

24.01.2017 | Life Sciences

Open, flexible assembly platform for optical systems

24.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>