Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers reassured by record-breaking star formation in huge galaxy cluster

16.08.2012
Until now, evidence for what astronomers suspect happens at the cores of the largest galaxy clusters has been uncomfortably scarce. Theory predicts that cooling flows of gas should sink toward the cluster's center, sparking extreme star formation there, but so far – nada, zilch, not-so-much.

The situation changed dramatically when a large international team of over 80 astronomers, led by Massachusetts Institute of Technology's Hubble Fellow Michael McDonald, studied a recently discovered (yet among the largest-known) galaxy cluster.

The team found evidence for extreme star formation, or a starburst, significantly more extensive than any seen before in the core of a giant galaxy cluster. "It is indeed reassuring to see this process in action," says McDonald. "Further study of this system may shed some light on why other clusters aren't forming stars at these high rates, as they should be."

The result, published in the August 16th issue of the journal Nature, began developing in 2010 when data from the South Pole Telescope (SPT) allowed astronomers to identify the huge cluster of galaxies some 5.7 billion light-years distant. Designated SPT-CLJ2344-4243, it's among the largest galaxy clusters in the universe.

"Our first observations of this cluster with the Gemini South telescope in Chile really helped to ignite this work," says McDonald. "They were the first hints that the central galaxy in this cluster was such a beast!" The paper's second author, Matthew Bayliss of Harvard University, adds, "When I first saw the Gemini spectrum, I thought we must have mixed up the spectra, it just looked so bizarre compared to anything else of its kind." Bayliss and Harvard graduate student Jonathan Ruel used the Gemini data to determine the cluster's distance; they also corroborated its huge mass with estimates from X-ray data obtained with the Chandra X-ray Observatory. Additional survey data from the National Optical Astronomy Observatory's (NOAO) Blanco Telescope in Chile augmented the early characterization of this cluster. A Blanco image of the cluster is available as part of this press release.

With this result, astronomers now believe they have finally seen, at least in this one large cluster of galaxies, what they expected to find all along – a massive burst of star formation, presumably fueled by an extensive flow of cooling gas streaming inward toward the cluster's central core galaxy. The sinking gas is likely sparking star formation and a lively, dynamic environment – somewhat like a cold front triggering thunderstorms on a hot summer's day. This is in rich contrast to most other large galaxy clusters where central galaxies appear to have stopped forming new stars billions of years ago – an uncomfortable discrepancy known as the "cooling-flow problem."

According to theory, the hot plasma that fills the spaces between galaxy cluster members should glow in X-rays as it cools, in much the same way that hot coals glow red. As the galaxy cluster forms, this plasma initially heats up due to the gravitational energy released from the infall of smaller galaxies. As the gas cools, it should condense and sink inward (known as a cooling flow). In the cluster's center, this cooling flow can lead to very dense cores of gas, termed "cool cores," which should fuel bursts of star formation in all clusters that go through this process. Most of these predictions had been confirmed with observations—the X-ray glow, the lower temperatures at the cluster centers— but starbursts accompanying this cooling remain rare.

SPT-CLJ2344-4243, nicknamed the "Phoenix Cluster, lies in the direction of the southern constellation Phoenix, which McDonald suggests is fitting. "The mythology of the Phoenix – a bird rising from the dead – is a great way to describe this revived object," says McDonald. "While galaxies at the center of most clusters may have been dormant for billions of years, the central galaxy in this cluster seems to have come back to life with a new burst of star formation."

The team combined multiple ground- and space-based observations including data from the Gemini South 8-meter and the NOAO Blanco 4-meter telescopes, both in Chile and funded with support by the U.S. National Science Foundation (as is the South Pole Telescope which made the initial discovery of this galaxy cluster in 2010). Observations critical to this research also included the Chandra X-ray Observatory, NASA's WISE and GALEX observatories, and the European Space Agency's Herschel Observatory.

Antonieta Garcia | EurekAlert!
Further information:
http://www.gemini.edu

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>