Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Get Rare Peek at Early Stage of Star Formation

14.03.2012
Using radio and infrared telescopes, astronomers have obtained a first tantalizing look at a crucial early stage in star formation.

The new observations promise to help scientists understand the early stages of a sequence of events through which a giant cloud of gas and dust collapses into dense cores that, in turn, form new stars.


New observations show 'pristine' example of second
stage of star formation shown in this graphic.
(Images not to scale.) CREDIT: Bill Saxton, NRAO/AUI/NSF

The scientists studied a giant cloud about 770 light-years from Earth in the constellation Perseus. They used the European Space Agency's Herschel Space Observatory and the National Science Foundation's Green Bank Telescope (GBT) to make detailed observations of a clump, containing nearly 100 times the mass of the Sun, within that cloud.

Stars are formed, astronomers think, when such a cloud of gas and dust collapses gravitationally, first into clumps, then into dense cores, each of which can then begin to further collapse and form a young star. The details of how this happens are not well understood. One difficulty is that most regions where this process is underway already have formed stars nearby. Those stars affect subsequent nearby star formation through their stellar winds and shock waves when they explode as supernovae.

"We have found the first clear case of a clump of potentially star-forming gas that is on the verge of forming dense cores, and is unaffected by any nearby stars," said James Di Francesco, of the University of Victoria, Canada.

"Finding such a 'pristine' clump of gas that may be starting to form dense cores is a key to gaining a fuller understanding of the early stages of star formation," said Sarah Sadavoy, a graduate student also of the University of Victoria. "This is a rare find," she added.

The far-infrared images from the Herschel Space Observatory were obtained as part of the Herschel Gould Belt Survey key program. They revealed previously-unseen substructures within the clump that may be precursors to cores with the potential to form individual stars. The astronomers used the GBT to study the motions and temperatures of molecules, primarily ammonia, within these substructures. These GBT observations indicated that one of the substructures is likely to be gravitationally bound and thus farther along the path to condensing into a core than the others.

"This may be the first observation ever of a core precursor," DiFrancesco said.

The entire clump, the scientists say, could be expected to form about ten new stars.

"This region appears to be an excellent candidate for future core formation, and thus is an ideal area for additional studies that can help us understand how this process works without the triggering effect of winds from other stars and shocks from supernova explosions," Sadavoy said.

The scientists will publish their results in the journal Astronomy & Astrophysics.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Dave Finley | EurekAlert!
Further information:
http://www.nrao.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>