Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Get Rare Peek at Early Stage of Star Formation

14.03.2012
Using radio and infrared telescopes, astronomers have obtained a first tantalizing look at a crucial early stage in star formation.

The new observations promise to help scientists understand the early stages of a sequence of events through which a giant cloud of gas and dust collapses into dense cores that, in turn, form new stars.


New observations show 'pristine' example of second
stage of star formation shown in this graphic.
(Images not to scale.) CREDIT: Bill Saxton, NRAO/AUI/NSF

The scientists studied a giant cloud about 770 light-years from Earth in the constellation Perseus. They used the European Space Agency's Herschel Space Observatory and the National Science Foundation's Green Bank Telescope (GBT) to make detailed observations of a clump, containing nearly 100 times the mass of the Sun, within that cloud.

Stars are formed, astronomers think, when such a cloud of gas and dust collapses gravitationally, first into clumps, then into dense cores, each of which can then begin to further collapse and form a young star. The details of how this happens are not well understood. One difficulty is that most regions where this process is underway already have formed stars nearby. Those stars affect subsequent nearby star formation through their stellar winds and shock waves when they explode as supernovae.

"We have found the first clear case of a clump of potentially star-forming gas that is on the verge of forming dense cores, and is unaffected by any nearby stars," said James Di Francesco, of the University of Victoria, Canada.

"Finding such a 'pristine' clump of gas that may be starting to form dense cores is a key to gaining a fuller understanding of the early stages of star formation," said Sarah Sadavoy, a graduate student also of the University of Victoria. "This is a rare find," she added.

The far-infrared images from the Herschel Space Observatory were obtained as part of the Herschel Gould Belt Survey key program. They revealed previously-unseen substructures within the clump that may be precursors to cores with the potential to form individual stars. The astronomers used the GBT to study the motions and temperatures of molecules, primarily ammonia, within these substructures. These GBT observations indicated that one of the substructures is likely to be gravitationally bound and thus farther along the path to condensing into a core than the others.

"This may be the first observation ever of a core precursor," DiFrancesco said.

The entire clump, the scientists say, could be expected to form about ten new stars.

"This region appears to be an excellent candidate for future core formation, and thus is an ideal area for additional studies that can help us understand how this process works without the triggering effect of winds from other stars and shocks from supernova explosions," Sadavoy said.

The scientists will publish their results in the journal Astronomy & Astrophysics.

The National Radio Astronomy Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

Dave Finley | EurekAlert!
Further information:
http://www.nrao.edu

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>