Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers pinpoint elusive galaxy after decade-long hunt – and find it's not alone

14.06.2012
An international team of astronomers led by Fabian Walter of the Max Planck Institute for Astronomy has, for the first time, determined the distance of the galaxy HDF850.1, well-known among astronomers as being one of the most productive star-forming galaxies in the observable universe.
The galaxy is at a distance of 12.5 billion light years. Hence, we see it as it was 12.5 billion years ago. Even more of a surprise, HDF850.1 turns out to be part of a group of around a dozen protogalaxies that formed within the first billion years of cosmic history – only one of two such primordial clusters known to date. The work is being published in the journal Nature.

The galaxy HDF850.1 was discovered in 1998. It is famous for producing new stars at a rate that is near-incredible even on astronomical scales: a combined mass of a thousand Suns per year. For comparison: an ordinary galaxy such as our own produces no more than one solar mass's worth of new stars per year. Yet for the past fourteen years, HDF850.1 has remained strangely elusive – its location in space, specifically: its distance from Earth the subject of many studies, but ultimately unknown. How was that possible?

The "Hubble Deep Field", where HDF850.1 is located, is a region in the sky that affords an almost unparalleled view into the deepest reaches of space. It was first studied extensively using the Hubble Space Telescope. Yet observations using visible light only reveal part of the cosmic picture, and astronomers were quick to follow-up at different wavelengths. In the late 1990s, astronomers using the James Clerk Maxwell Telescope on Hawai'i surveyed the region using submillimeter radiation. This type of radiation, with wavelengths between a few tenths of a millimeter and a millimeter, is particularly suitable for detecting cool clouds of gas and dust.

The researchers were taken by surprise when they realized that HDF850.1 was the brightest source of submillimeter emission in the field by far, a galaxy that was evidently forming as many stars as all the other galaxies in the Hubble Deep Field combined – and which was completely invisible in the observations of the Hubble Space Telescope!

"The galaxy's invisibility is no great mystery. Stars form in dense clouds of gas and dust. These dense clouds are opaque to visible light, hiding the galaxy from sight. Submillimeter radiation passes through the dense dust clouds unhindered, showing what is inside. But the lack of data from all but a very narrow range of the spectrum made it very difficult to determine the galaxy's redshift, and thus its place in cosmic history," explains Fabian Walter of the Max Planck Institute for Astronomy.

Now Fabian Walter, leading an international group of researchers has managed to solve the mystery: Taking advantage of recent upgrades to the IRAM interferometer on the Plateau de Bure in the French Alps, which combines six radio antennas that then act as one gigantic millimeter telescope, the researchers identified the characteristic features ("spectral lines") necessary for an accurate distance measurement. "It is the availability of more powerful and sensitive instruments recently installed on the IRAM interferometer that allowed us to detect these weak lines in HDF850.1, and finally find what we had been unsuccessfully looking for, during the past 14 years," explains Pierre Cox, Director of IRAM.

The result is a surprise: The galaxy is at a distance of 12.5 billion light-years from Earth (z ~ 5.2). We see it as it was 12.5 billion years ago, at a time when the universe itself was only 1.1 billion years old! HDF850.1's intense star-forming activity thus belongs to a very early period of cosmic history, when the universe was less than 10% of its current age.

A combination with observations obtained at the National Science Foundation's Karl Jansky Very Large Array (VLA), a giant compound radio telescope in the US state of New Mexico, then revealed that a large fraction of the galaxy's mass is in the form of molecules – the raw material for future stars. The fraction is much higher than what is found in galaxies in the local universe.

Once the distance was known, the researchers were able to put the galaxy into context. Using additional data from published and unpublished surveys, they were able to show that the galaxy is part of what appears to be an early form of galaxy cluster – one of only two such clusters known to date.

The new work highlights the importance of future, more powerful interferometers operating at millimeter and submillimeter wavelengths. Both NOEMA, the future extension of the Plateau de Bure interferometer, and ALMA, a new interferometer array currently being built by an international consortium in the Atacama desert in Chile, will cover these wavelengths in unprecedented detail. They should allow for distance determinations and more detailed study of many more galaxies, invisible at optical wavelengths, that were actively forming stars in the early universe.

Contact information

Fabian Walter (lead author)
Max Planck Institute for Astronomy
Phone: (+49|0) 6221 – 528 225
Email: walter@mpia.de

Markus Pössel (Public relations)
Max Planck Institute for Astronomy
Heidelberg, Germany
Phone: (+49|0) 6221 – 528 261
Email: pr@mpia.de

Dr. Markus Pössel | Max-Planck-Institut
Further information:
http://www.mpia.de
http://www.mpia.de/Public/menu_q2.php?Aktuelles/PR/2012/PR120613/PR_120613_en.html

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>