Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Pin Down Origins of “Mile Markers” for Expansion of Universe

20.11.2012
A study using a unique new instrument on the world’s largest optical telescope has revealed the likely origins of especially bright supernovae that astronomers use as easy-to-spot “mile markers” to measure the expansion and acceleration of the universe.

In a paper to appear in the Astrophysical Journal, researchers describe observations of recent supernova 2011fe that they captured with the Large Binocular Telescope (LBT) using a tool created at Ohio State University: the Multi-Object Double Spectrograph (MODS).

MODS measures the frequencies and intensities of light shining from a star. Stars shine at different frequencies depending on the chemical elements they are made of; a star like the sun, which is made mostly of hydrogen, shines at different frequencies than a star that is made mostly of helium. So astronomers can use spectra to determine what a particular star is made of.

Based on the frequencies of light emanating from supernova 2011fe, this type of supernova – known as Type Ia – is most likely caused by the interaction between a pair of dead stars known as white dwarfs, the astronomers concluded. One white dwarf orbits the other and sheds material onto it, until the other white dwarf becomes unstable and explodes, shining billions of times brighter than the sun.

Astronomers worldwide have tried to confirm the origin of Type Ia supernovae for decades. Groups have proposed several different hypotheses, including exotic scenarios involving white dwarfs paired with still-“living” giant stars, or even stars like the sun.

Kris Stanek, professor of astronomy at Ohio State and a co-author of the study, explained why settling this issue is important.

“We really want to know more about these supernovae, given their importance in our understanding of how the universe is expanding,” he said. “Many observations have been done over the years, and I think many astronomers are starting to accept one explanation – that two white dwarfs are probably responsible.”

Still, the alternative theories keep re-emerging, he said: “like zombies that won’t die.”

“With this study, we were looking for a zombie ‘kill shot,’ and we think we found it.”

Rick Pogge, professor of astronomy and lead designer of MODS, said that the spectrograph is the ideal tool for settling the debate.

“MODS is one of the most sensitive optical spectrometers in operation today, and being used on what is currently the world's largest optical telescope. If we couldn't kill this debate with MODS and the LBT, something would be dreadfully wrong,” he added.

Type Ia supernovae make good mile markers for the universe because their extreme brightness – 5 billion times brighter than the sun – makes them easy to see, and their distinctive pattern of brightening and dimming in the weeks after they appear makes them easily identifiable.

Astronomers use that information to calculate the distance from Earth to the supernova, and in turn, calculate how fast the universe is expanding. Knowing more about the composition of the stars that create the supernovae could open up new ideas in the understanding of that expansion.

Here’s what nearly all astronomers agree on: Type Ia supernovae originate in binary systems, where one star or star-like object is orbiting another. The main object – the one that initiates the explosion – is a white dwarf, the massive remnants of a dead star. Over time, the white dwarf’s gravity peels off gas and dust from the companion and absorbs that material. Eventually, the white dwarf becomes unstable, and explodes in a supernova.

At issue, explained lead study author and doctoral student Ben Shappee, is the identity of the white dwarf’s companion – is it another white dwarf, or a giant star, or even a star like our sun?

The Ohio State astronomers found their answer in the light spectrum emanating from the supernova. If the companion were a star like ours, or even a giant star, a sizeable portion of the debris blown away from the supernova would contain atoms of the element hydrogen.

Supernova 2011fe provided a good chance for the researchers to test for the presence of hydrogen. Located in the Pinwheel Galaxy some 21 million light-years away, it was the closest near-Earth Type Ia supernova to occur in the last 20 years.

“If the companion were a star such as ours or even a red giant, we would expect to see a lot of hydrogen in the signal – maybe even half a solar mass’ worth, as the companion was blown away. But instead, we saw at most only one tenth of one percent of a solar mass’ worth of hydrogen. That suggests that the white dwarf’s companion had very little if any hydrogen in it, and is likely another white dwarf,” Shappee said.

Pogge called the study “a beautiful demonstration of the kind of data we are able to get on a routine basis with the LBT and MODS. Our entire instrument team is very proud of how well MODS is working.”

In fact, this study was done with only one half of the MODS system – MODS1 – which is currently installed on one mirror of the LBT. It’s twin, MODS2, is currently under construction in Columbus and scheduled to be installed on the second mirror in early 2013.

Shappee pursued this work for his doctoral degree, with funding from a National Science Foundation (NSF) Graduate Research Fellowship. In keeping with the Department of Astronomy’s tradition of training graduate students to defend their work through informal debate, he presented the paper at a “morning coffee” discussion, and posted a video explanation of the work on YouTube.

Coauthors on the paper also include Peter Garnavich from the University of Notre Dame. This research was supported by the NSF, and the MODS spectrographs are being built with funding from NSF along with additional funds from the Ohio Board of Regents and the Ohio State University Office of Research.

Contact: Ben Shappee, (614) 292-7881; Shappee.1@osu.edu
Krzysztof Stanek, (614) 292-3433; Stanek.32@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Pam Frost Gorder | EurekAlert!
Further information:
http://www.osu.edu

More articles from Physics and Astronomy:

nachricht Hubble observes one-of-a-kind star nicknamed 'Nasty'
22.05.2015 | NASA/Goddard Space Flight Center

nachricht Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents
22.05.2015 | Universität Basel

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>