Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers pierce galactic clouds to shine light on black hole development

20.06.2014

International team helps explain how black hole outflows affect structure formation in universe

An international team of scientists including a Virginia Tech physicist have discovered that winds blowing from a supermassive black hole in a nearby galaxy work to obscure observations and x-rays.


This is an illustration of the physical, spatial and temporal picture for the outflows emanating from the vicinity of the super massive black hole in the galaxy NGC 5548. The behavior of the emission source in five epochs is shown along the time axis. The obscurer is situated at roughly 0.03 light years (0.01 parsecs) from the emission source and is only seen in 2011 and 2013 (it is much stronger in 2013). Outflow component 1 shows the most dramatic changes in its absorption troughs. Different observed ionic species are represented as colored zones within the absorbers.

Credit: Ann Feild/Space Telescope Science Institute

The discovery in today's (June 19, 2004) issue of Science Express sheds light on the unexpected behavior of black holes, which emit large amounts of matter through powerful, galactic winds.

Using a large array of satellites and space observatories, the team spent more than a year training their instruments on the brightest and most studied of the "local" black holes — the one situated at the core of Type I Seyfert Galaxy NGC 5548.

What they found was a bit of a surprise.

The researchers discovered much colder gas than expected based on past observations, showing that the wind had cooled and that a stream of gas moved quickly outward and blocked 90 percent of x-rays. The observation was the first direct evidence of an obscuration process that — in more luminous galaxies — has been shown to regulate growth of black holes.

By looking at data from different sources, scientists found that a thick layer of gas lay between the galactic nucleus and the Earth blocked the lower energy x-rays often used to study the system, but allowed more energetic x-rays to get through.

Data from Hubble Space Telescope also showed ultraviolet emissions being partially absorbed by a stream of gas.

A multi-wavelength observational campaign simultaneously looking at an object to decipher its secrets is rare, the researchers said.

"I don't think anyone has trained so many scopes and put in so much time on a single object like this," said Nahum Arav, an associate professor of physics with Virginia Tech's College of Science. "The result is quite spectacular. We saw something that was never studied well before and we also deciphered the outflow in the object. We know far more about this outflow than any studied previously as to where it is and how it behaves in time. We have a physical model that explains all the data we've taken of the outflow over 16 years."

The discovery was made by an international team led by SRON Netherlands Institute for Space Research scientist Jelle Kaastra using the major space observatories of the European Space Agency, NASA, the Hubble Space Telescope, Swift, NuSTAR, Chandra, INTREGRAL, and other satellites and observation platforms.

"These outflows are thought to be a major player in the structure formation of the universe," Arav said "This particular outflow is comparatively small but because it's so close we can study it very well and then create a better understanding of how the phenomenon will work in very large objects that do affect the structure formation in the universe."

"Shadowing" of light from a black hole had not been seen before. With the discovery, scientists were able to decipher the outflow.

"Until now our knowledge of these characteristics was very limited," Arav said. "Before we were making educated inferences — but now we know. We know the distance of outflow from the center of source, we know the mass of outflow, and we know what causes its observed changes. The shadowing was definitely a surprise —a beautiful phenomenon we were lucky to catch."

Arav said luck played a part because the effect hadn't existed before last year.

Over the past two years the shadowing has built up and Arav believes it won't last much longer than another year or two, but concedes scientists don't have a full enough observation to say how the shadowing feature is changing in time.

Rosaire Bushey | Eurek Alert!
Further information:
http://www.vt.edu

Further reports about: Astronomers Hubble Space Telescope clouds observations phenomenon satellites shine structure winds

More articles from Physics and Astronomy:

nachricht Spiral arms: not just in galaxies
30.09.2016 | Max-Planck-Institut für Radioastronomie

nachricht Discovery of an Extragalactic Hot Molecular Core
29.09.2016 | National Astronomical Observatory of Japan

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>