Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers identify thick disc of older stars in nearby Andromeda galaxy

16.02.2011
An international team of astronomers has identified for the first time a thick stellar disc in the Andromeda galaxy, the nearest large spiral galaxy to our own Milky Way.

The discovery of the thick disc, a major result from a five-year investigation, will help astronomers better understand the processes involved in the formation and evolution of large spiral galaxies like ours, according to the team, which includes UCLA research astronomer Michael Rich and colleagues from Europe and Australia.

Using the Keck Telescope in Hawaii, the astronomers analyzed the velocities of individual bright stars within the Andromeda galaxy and were able to observe a group of stars tracing a thick disc — distinct from those comprising the galaxy's already-known thin disc — and assessed how these stars differ from thin-disc stars in height, width and chemistry.

Approximately 70 percent of Andromeda's stars are contained in the galaxy's thin stellar disc. This disc structure contains the spiral arms traced by regions of active star formation, and it surrounds a central bulge of old stars at the core of the galaxy.

"From observations of our own Milky Way and other nearby spirals, we know that these galaxies typically possess two stellar discs, both a 'thin' and a 'thick' disc," said Michelle Collins, a doctoral student at the University of Cambridge's Institute of Astronomy, who led the study.

The thick disc consists of older stars whose orbits take them along a "thicker" path — one that extends both above and below the galaxy's thin disc.

"The classical thin stellar discs that we typically see in Hubble imaging result from the accretion of gas towards the end of a galaxy's formation, whereas thick discs are produced in a much earlier phase of the galaxy's life, making them ideal tracers of the processes involved in galactic evolution," Collins said.

The formation process of thick discs is not yet well understood. Previously, the best hope for understanding this structure was by studying the thick disc present in our own Milky Way. However, much of our galaxy's thick disc is obscured from view. The discovery of a similar thick disc in Andromeda presents a much clearer view of spiral structure.

Astronomers will be able to determine the properties of the disc across the galaxy and will search for signatures of the events related to its formation, the researchers said.

"Our initial study of this component already suggests that it is likely older than the thin disc, with a different chemical composition," said UCLA's Rich, who was the principal investigator at the Keck Observatory for the observations. "Future, more detailed observations should enable us to unravel the formation of the disc system in Andromeda, with the potential to apply this understanding to the formation of spiral galaxies throughout the universe."

"This result is one of the most exciting to emerge from the larger parent survey of the motions and chemistry of stars in the outskirts of Andromeda,'' said Scott Chapman of the Institute of Astronomy at Cambridge. "Finding this thick disc has afforded us a unique and spectacular view of the formation of the Andromeda system and will undoubtedly assist in our understanding of this complex process."

The study is currently available in the online version of Monthly Notices of the Royal Astronomical Society and will be published in a print edition of the journal later this year.

UCLA is California's largest university, with an enrollment of more than 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 328 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and five faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom and follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>