Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017

What sounds like a stomach-turning ride at an amusement park might hold the key to unravelling the mysterious mechanism that causes beams of radio waves to shoot out from pulsars -- super-magnetic rotating stars in our Galaxy.

New research from Curtin University, obtained using the Murchison Widefield Array (MWA) radio telescope located in the Western Australian outback, suggests the answer could lie in a 'drifting carousel' found in a special class of pulsars.


Antenna 'tiles' of the Murchison Widefield Array (MWA) are in the Western Australian desert.

Image credit: MWA Project / Curtin University

Curtin PhD student Sam McSweeney, who led the research as part of his PhD project with the ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) and the International Centre for Radio Astronomy Research (ICRAR), described pulsars as extremely dense neutron stars that emit beams of radio waves.

"These pulsars weigh about half a million times the mass of the Earth but are only 20km across," Mr McSweeney said.

"They are nicknamed 'lighthouses in space' because they appear to 'pulse' once per rotation period, and their sweeping light signal can be seen through telescopes at exceptionally regular intervals."

Thousands of pulsars have been seen since their first discovery in the late 1960s, but questions still remain as to why these stars emit radio beams in the first place, and what type of emission model best describes the radio waves, or 'light', that we see.

"The classical pulsar model pictures the emission that is shooting out from the magnetic poles of the pulsar as a light cone," Mr McSweeney said.

"But the signal that we observe with our telescopes suggests a much more complex structure behind this emission - probably coming from several emission regions, not just one."

The 'drifting carousel' model manages to explain this complexity much better, describing the emission as coming from patches of charged particles, arranged in a rotating ring around magnetic field lines, or a carousel.

"As each patch releases radiation, the rotation generates a small drift in the observed signal of these sub-pulses that we can detect using the MWA," Mr McSweeney said.

"Occasionally, we find that this sub-pulse carousel gets faster and then slower again, which can be our best window into the plasma physics underlying the pulsar emission."

One possibility the researchers are currently testing is that surface temperature is responsible for the carousel changing rotation speed: localised 'hotspots' on the pulsar surface might cause it to speed up.

"We will observe individual pulses from these drifting pulsars across a wide range of radio frequencies, with lower frequency data than ever before," Mr McSweeney said.

"Looking at the same pulsar with different telescopes simultaneously will allow us to trace the emission at different heights above their surface."

The researchers plan to combine the data from the MWA, the Giant Metre-wave Radio Telescope in India and the CSIRO Parkes Radio Telescope in New South Wales to - literally - get to the bottom of the mysterious pulses.

###

A paper explaining the research, Low Frequency Observations of the Subpulse Drifter PSR J0034-0721 with the Murchison Widefield Array, was recently published in The Astrophysical Journal. An explanatory video is available under: https://youtu.be/WlNkBuQgCZM

Media Contact

Dr. Wiebke Ebeling
wiebke.ebeling@curtin.edu.au
61-892-669-174

 @icrar

http://www.icrar.org/ 

Dr. Wiebke Ebeling | EurekAlert!

More articles from Physics and Astronomy:

nachricht NASA detects solar flare pulses at Sun and Earth
17.11.2017 | NASA/Goddard Space Flight Center

nachricht Pluto's hydrocarbon haze keeps dwarf planet colder than expected
16.11.2017 | University of California - Santa Cruz

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>