Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017

What sounds like a stomach-turning ride at an amusement park might hold the key to unravelling the mysterious mechanism that causes beams of radio waves to shoot out from pulsars -- super-magnetic rotating stars in our Galaxy.

New research from Curtin University, obtained using the Murchison Widefield Array (MWA) radio telescope located in the Western Australian outback, suggests the answer could lie in a 'drifting carousel' found in a special class of pulsars.


Antenna 'tiles' of the Murchison Widefield Array (MWA) are in the Western Australian desert.

Image credit: MWA Project / Curtin University

Curtin PhD student Sam McSweeney, who led the research as part of his PhD project with the ARC Centre of Excellence for All-sky Astrophysics (CAASTRO) and the International Centre for Radio Astronomy Research (ICRAR), described pulsars as extremely dense neutron stars that emit beams of radio waves.

"These pulsars weigh about half a million times the mass of the Earth but are only 20km across," Mr McSweeney said.

"They are nicknamed 'lighthouses in space' because they appear to 'pulse' once per rotation period, and their sweeping light signal can be seen through telescopes at exceptionally regular intervals."

Thousands of pulsars have been seen since their first discovery in the late 1960s, but questions still remain as to why these stars emit radio beams in the first place, and what type of emission model best describes the radio waves, or 'light', that we see.

"The classical pulsar model pictures the emission that is shooting out from the magnetic poles of the pulsar as a light cone," Mr McSweeney said.

"But the signal that we observe with our telescopes suggests a much more complex structure behind this emission - probably coming from several emission regions, not just one."

The 'drifting carousel' model manages to explain this complexity much better, describing the emission as coming from patches of charged particles, arranged in a rotating ring around magnetic field lines, or a carousel.

"As each patch releases radiation, the rotation generates a small drift in the observed signal of these sub-pulses that we can detect using the MWA," Mr McSweeney said.

"Occasionally, we find that this sub-pulse carousel gets faster and then slower again, which can be our best window into the plasma physics underlying the pulsar emission."

One possibility the researchers are currently testing is that surface temperature is responsible for the carousel changing rotation speed: localised 'hotspots' on the pulsar surface might cause it to speed up.

"We will observe individual pulses from these drifting pulsars across a wide range of radio frequencies, with lower frequency data than ever before," Mr McSweeney said.

"Looking at the same pulsar with different telescopes simultaneously will allow us to trace the emission at different heights above their surface."

The researchers plan to combine the data from the MWA, the Giant Metre-wave Radio Telescope in India and the CSIRO Parkes Radio Telescope in New South Wales to - literally - get to the bottom of the mysterious pulses.

###

A paper explaining the research, Low Frequency Observations of the Subpulse Drifter PSR J0034-0721 with the Murchison Widefield Array, was recently published in The Astrophysical Journal. An explanatory video is available under: https://youtu.be/WlNkBuQgCZM

Media Contact

Dr. Wiebke Ebeling
wiebke.ebeling@curtin.edu.au
61-892-669-174

 @icrar

http://www.icrar.org/ 

Dr. Wiebke Ebeling | EurekAlert!

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>