Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Gravitate Toward Einstein’s Telescope

24.02.2009
Scientists are harnessing the cosmos as a scientific “instrument” in their quest to determine the makeup of the universe.

The University of Chicago’s Evalyn Gates calls the instrument “Einstein’s telescope.” The instrument is actually the phenomenon of gravitational lensing, which acts as a sort of natural telescope. Gates’s new book, Einstein’s Telescope: The Hunt for Dark Matter and Dark Energy in the Universe, explains how it works.

Although based on Albert Einstein’s general theory of relativity, the effect is easily demonstrated. Look at a light through the bottom of a wine glass, Gates recommends, and see the resulting light distortion.

“Einstein’s telescope is using the universe itself as a lens through which we can seek out galaxies that would otherwise be too faint to be seen,” says Gates, Assistant Director of the University’s Kavli Institute for Cosmological Physics.

Einstein’s first inklings

Long ago Einstein recognized the potential existence of gravitational lensing, a consequence of his theory of general relativity. According to general relativity, celestial objects create dimples in space-time that bend the light traveling from behind.

Einstein realized that the gravitational influence of a foreground star could theoretically bend the light of another star sitting almost directly far beyond it, producing two images of the background star.

“Gravitational lensing magnifies things as well as making multiple images and distorting the shape of images, so you can actually use it as a magnifying glass,” Gates explains.

But, assuming that the effect would be too weak to detect, Einstein immediately dismissed its significance. “What he didn’t anticipate, among other things, were the incredible leaps forward in telescope technology,” Gates says.

Seeing the invisible

Astronomers now use gravitational lensing to look for dark matter and the imprint of dark energy, two of the greatest modern scientific mysteries.

Dark energy, which acts in opposition to gravity, is the dominant force in the universe.

“We can’t see dark energy directly by any means, but we’re looking for how it has sculpted the matter distribution of the universe over the past few billion years, since it’s been the dominant factor, and also how it has affected the rate at which the Universe is expanding” Gates says.

And gravitational lensing is essentially the only method astronomers have for tracing out the web of dark matter that pervades the Universe, and determining how dark energy has impacted the evolution of this web. “It’s really hot scientifically,” she says.

Like dark energy, dark matter is also invisible. It accounts for most of the matter in the universe, but exactly what it is remains unknown. Scientists only know that dark matter differs significantly from normal matter (which is essentially composed of protons and neutrons) that dominates everyday life.

“What we’re made of is just about five percent of everything that’s in the universe,” Gates says.

In 1990s scientists wondered if a significant quantity of dark matter in the halo consisted of MACHOs (Massive Astrophysical Compact Halo Objects) – faint objects such as dim stars, Jupiter-sized planets or stellar-mass black holes that are all composed of normal matter but hard to see.

Gates and her collaborators were among the researchers who used gravitational lensing to search for MACHOs within the halo of the Milky Way galaxy.

“We have seen MACHOs – but what we found is that they make up at most a small fraction of the galactic halo,” Gates said.

A look into galaxies past

Scientists also use galaxy clusters as gravitational lenses to probe 13 billion years back into the history of the universe. “They’re seeing some of the very first galaxies,” she says.

Gravitational lensing offers astrophysicists a tool comparable to magnetic resonance imaging and computing tomography, which have provided health professionals with unprecedented new views of the human body.

“Gravitational lensing is going to allow us to image the universe in ways that wouldn’t have been possible even 50 years ago,” she says.

During the 20th century, quantum mechanics and general relativity radically altered scientists’ view of the universe, Gates says. Investigations of dark matter and dark energy may do likewise.

“It may lead us to another revolution in our understanding of the most fundamental aspects of the universe, time, matter, and energy.”

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu
http://www.newswise.com/articles/view/549380/?sc=dwhr;xy=5048111

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>