Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers use gamma-ray burst to probe star formation in the early universe

08.01.2009
The brilliant afterglow of a powerful gamma-ray burst (GRB) has enabled astronomers to probe the star-forming environment of a distant galaxy, resulting in the first detection of molecular gas in a GRB host galaxy. By analyzing the spectrum of light emitted in the GRB afterglow, the researchers are gleaning insights into an active stellar nursery in a galaxy so far away it appears as it was 10 billion years ago.

"This observation required a rare and exceptionally bright event to allow us to probe the fragile environment where stars were forming just 3 billion years after the Big Bang. After correcting for the extreme dust extinction, this is intrinsically the second brightest GRB afterglow to date; it would have been easily observed with amateur telescopes, if not for the dust in the way," said Jason X. Prochaska, professor of astronomy and astrophysics at the University of California, Santa Cruz.

Prochaska's team will present its findings at the American Astronomical Society meeting this week in Long Beach, Calif. A paper describing the results has been accepted for publication in Astrophysical Journal Letters.

Stars form in vast clouds of molecular gas and dust, and astronomers have expected to find evidence of these molecular clouds in GRB host galaxies. Until now, however, efforts to detect molecular gas in GRB afterglow spectra had been unsuccessful. The new observations by Prochaska and his coauthors indicate that star formation in the early universe occurred in environments similar to star-forming regions in the Milky Way.

The study focused on a "long duration" gamma-ray burst known as GRB 080607. This type of burst is thought to occur when a massive star collapses to form a black hole. The initial burst of high-energy gamma rays was followed by a slowly fading afterglow of radiation over the entire spectrum of wavelengths.

"We suspect that previous events like 080607 were too faint to be observed on Earth," said coauthor Yaron Sheffer of the University of Toledo. "Many so-called dark bursts, with no observable afterglow, probably mark the dusty, highly extinguished environments of young star-forming regions."

NASA's Swift satellite detected the gamma-ray burst and began x-ray observations, while alerting astronomers and triggering automatic observations by ground-based telescopes such as the Katzman Automatic Imaging Telescope at Lick Observatory. Team members Joshua Bloom, Daniel Perley, and Adam Miller of UC Berkeley happened to be using the Keck I Telescope at the W. M. Keck Observatory in Hawaii and began spectroscopic observations within 15 minutes using the Low Resolution Imaging Spectrograph (LRIS).

The resulting spectrum of the optical afterglow yielded information about the dust, gas, and metals in the interstellar medium through which the light passed on its way out of the host galaxy. In addition to the first clear detection of molecular gases (both carbon monoxide and hydrogen), the spectrum indicated a metal composition comparable to that of the Sun (to astronomers, "metals" are elements heavier than hydrogen and helium).

The spectrum also has many features researchers have never seen before, Prochaska said. In addition to hundreds of standard absorption lines corresponding to known transitions of various elements, the spectrum shows many absorption lines that researchers have yet to identify.

"This is easily the most fascinating spectrum that I've ever worked on," Prochaska said. "Nearly half of the features remain a mystery, and it is possible that no one has ever detected them previously, either in controlled laboratory experiments or in spectra from our galaxy or other galaxies."

There is also more hydrogen in this spectrum than along any path through the Milky Way, he added. "This remains a bit of a puzzle," Prochaska said. "For now, we don't know much about the galaxy that hosted the explosion, but the evidence suggests it has been prodigious in terms of star formation."

The burst and its afterglow were observed in June, and the team did not manage to get images of the host galaxy before it moved to a position in the sky where it could not be observed. In January, the researchers will image the galaxy to connect their findings on the star-forming region with its global properties.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht Applicability of dynamic facilitation theory to binary hard disk systems
08.12.2016 | Nagoya Institute of Technology

nachricht Will Earth still exist 5 billion years from now?
08.12.2016 | KU Leuven

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>