Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers Find Elusive Planets in Decade-Old Hubble Data

07.10.2011
In a painstaking re-analysis of Hubble Space Telescope images from 1998, astronomers have found visual evidence for two extrasolar planets that went undetected back then.

Finding these hidden gems in the Hubble archive gives astronomers an invaluable time machine for comparing much earlier planet orbital motion data to more recent observations. It also demonstrates a novel approach for planet hunting in archival Hubble data.


Left: This is an image of the star HR 8799 taken by Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in 1998. A mask within the camera (coronagraph) blocks most of the light from the star. In addition, software has been used to digitally subtract more starlight. Nevertheless, scattered light from HR 8799 dominates the image, obscuring any details.

Center: Recent, sophisticated software processing of the NICMOS data removes most of the scattered starlight to reveal three planets orbiting HR 8799. The positions of these planets coincide with orbits of planets observed by ground-based telescopes in 2007 and 2008.

Right: This is an illustration of the HR 8799 exoplanet system based on the reanalysis of Hubble NICMOS data and ground-based observations. The positions of the star and the orbits of the four known planets are shown schematically. The size of the dots is not to scale with their true size. The three outermost planets, a, b, and c are detected in both the NICMOS and ground-based data. A fourth, inner planet, e was detected in ground-based observations. The orbits appear elongated because of a slight tilt of the plane of the orbits relative to our line of sight. The size of the HR 8799 planetary system is comparable to our solar system, as indicated by the orbit of Neptune, shown to scale.

Credit: NASA; ESA; STScI, R. Soummer

Four giant planets are known to orbit the young, massive star HR 8799, which is130 light-years away. In 2007 and 2008 the first three planets were discovered in near-infrared ground-based images taken with the W.M. Keck Observatory and the Gemini North telescope by Christian Marois of the National Research Council in Canada and his team. Marois and his colleagues then uncovered a fourth innermost planet in 2010. This is the only multiple exoplanetary system for which astronomers have obtained direct snapshots.

In 2009 David Lafreniere of the University of Montreal recovered hidden exoplanet data in Hubble images of HR 8799 taken in 1998 with the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). He identified the position of the outermost planet known to orbit the star. This first demonstrated the power of a new data-processing technique for retrieving faint planets buried in the glow of the central star.

A new analysis of the same archival NICMOS data by Remi Soummer of the Space Telescope Science Institute in Baltimore has recovered all three of the outer planets. The fourth, innermost planet is 1.5 billion miles from the star and cannot be seen because it is on the edge of the NICMOS coronagraphic spot that blocks the light from the central star.

By finding the planets in multiple images spaced over years of time, the orbits of the planets can be tracked. Knowing the orbits is critical to understanding the behavior of multiple-planet systems because massive planets can perturb each other's orbits. "From the Hubble images we can determine the shape of their orbits, which brings insight into the system stability, planet masses and eccentricities, and also the inclination of the system," says Soummer.

These results are to be published in the Astrophysical Journal.

The three outer gas-giant planets have approximately 100-, 200-, and 400-year orbits. This means that astronomers need to wait a very long time to see how the planets move along their paths. The added time span from the Hubble data helps enormously. "The archive got us 10 years of science right now," he says. "Without this data we would have had to wait another decade. It's 10 years of science for free."

Nevertheless, the slowest-moving, outermost planet has barely changed position in 10 years. "But if we go to the next inner planet we see a little bit of an orbit, and the third inner planet we actually see a lot of motion," says Soummer.

The planets weren't found in 1998 when the Hubble observations were first taken because the methods used to detect them were not available at that time. When astronomers subtracted the light from the central star to look for the residual glow of planets, the residual light scatter was still overwhelming the faint planets.

Lafreniere developed a way to improve this type of analysis by using a library of reference stars to more precisely remove the "fingerprint" glow of the central star. Soummer's team took Lafreniere's method a step further and used 466 images of reference stars taken from a library containing over 10 years of NICMOS observations assembled by Glenn Schneider of the University of Arizona.

Soummer's team further increased contrast and minimized residual starlight. They completely removed the diffraction spikes, which are artifacts common to telescope imaging systems. This allowed them to see two of the faint inner planets in the Hubble data. The planets recovered in the NICMOS data are about 1/100,000th the brightness of the parent star when viewed in near-infrared light.

Soummer next plans to analyze approximately 400 other stars in the NICMOS archive with the same technique, improving image quality by a factor of 10 over the imaging methods used when the data were obtained.

Soummer's work demonstrates the power of the Hubble Space Telescope data archive, which harbors images and spectral information from over twenty years of Hubble observations. Astronomers tap into this library to complement new observations with a wealth of invaluable data already gathered, yielding much more discovery potential than new observations alone.

From the NICMOS archive data Soummer's team will assemble a list of planetary candidates to be confirmed by ground-based telescopes. If new planets are discovered they will once again have several years' worth of orbital motion to measure.

The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute (STScI) conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

Cheryl Gundy | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hubble/science/elusive-planets.html

More articles from Physics and Astronomy:

nachricht A tale of two pulsars' tails: Plumes offer geometry lessons to astronomers
18.01.2017 | Penn State

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>