Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find dust around a primitive star, shedding new light on universe's origins

16.01.2009
Astronomers have found evidence to suggest that during the early stages of the Universe, cosmic dust - the building block for the formation of planets and life throughout the cosmos - was partially created by the gradual death of carbon stars, dispelling theories that it comes solely from stars that have exploded.

They observed dust forming around a dying star in a nearby galaxy, similar to the primitive galaxies that formed soon after the big bang, giving them a fascinating glimpse back in time.

The research, which was funded by the Science and Technology Facilities Council (STFC) through a grant to Manchester University, is reported in the Jan. 16 issue of the journal Science. The study is based on observations with NASA's Spitzer Space Telescope and was carried out by an international team of astronomers.

Stars produce dust – smoke-like particles rich with carbon or oxygen - as they die. But less is known about how and what kind of dust was created in the first galaxies.

"All the elements heavier than helium were made after the Big Bang in successive generations of stars", explained team leader Albert Zijlstra from The University of Manchester's Jodrell Bank Centre for Astrophysics. "We came up with the idea of looking at nearby galaxies poor in heavier elements to get a close-up view of how stars live and die in conditions similar to those in the first galaxies."

Scientists have long debated where dust in the early Universe comes from and the most popular theory has been that supernova explosions of massive stars is the only source. Up until now, dust producing carbon stars like the one observed were not thought to have existed in early galaxies.

Gregory Sloan, from Cornell University, said “We haven't seen carbon-rich dust in this primitive an environment before. What this tells us is that carbon stars could have been pumping out dust soon after the first galaxies were born”.

The dust was discovered around the carbon star MAG 29, located 280,000 light years away in a small nearby galaxy called the Sculptor Dwarf. Stars more massive than the Sun end their lives as carbon stars. In our galaxy, carbon stars are a rich source of dust.

The Sculptor Dwarf contains only 4 percent of the carbon and other heavy elements in our own galaxy, making it similar to primitive galaxies seen at the edge of the universe. Those galaxies emitted the light that we now see soon after they and the universe formed.

"While everyone is focused on the questions of how much and what kind of dust supernovae make, they may not have appreciated that carbon stars can make at least some of the dust we are seeing," Sloan said. "The more we can understand the quantity and composition of the dust, the better we can understand how stars and galaxies evolve, both in the early universe and right next door."

"Observing stars such as MAG 29 is not unlike using a time machine", Sloan added, "in which astronomers can catch glimpses of what the universe looked like billions of years ago."

"MAG 29 is exceptionally rich in hydrocarbons, similar to those that are vital components in the chemistry that eventually led to the appearance of life on earth" added Mikako Matsuura from the National University of Japan.

The study also included other scientists in the UK, USA, Japan, Australia and Belgium. It is part of a project led by Albert Zijlstra at the University of Manchester's Jodrell Bank Centre for Astrophysics.

Julia Short | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>