Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find dust around a primitive star, shedding new light on universe's origins

16.01.2009
Astronomers have found evidence to suggest that during the early stages of the Universe, cosmic dust - the building block for the formation of planets and life throughout the cosmos - was partially created by the gradual death of carbon stars, dispelling theories that it comes solely from stars that have exploded.

They observed dust forming around a dying star in a nearby galaxy, similar to the primitive galaxies that formed soon after the big bang, giving them a fascinating glimpse back in time.

The research, which was funded by the Science and Technology Facilities Council (STFC) through a grant to Manchester University, is reported in the Jan. 16 issue of the journal Science. The study is based on observations with NASA's Spitzer Space Telescope and was carried out by an international team of astronomers.

Stars produce dust – smoke-like particles rich with carbon or oxygen - as they die. But less is known about how and what kind of dust was created in the first galaxies.

"All the elements heavier than helium were made after the Big Bang in successive generations of stars", explained team leader Albert Zijlstra from The University of Manchester's Jodrell Bank Centre for Astrophysics. "We came up with the idea of looking at nearby galaxies poor in heavier elements to get a close-up view of how stars live and die in conditions similar to those in the first galaxies."

Scientists have long debated where dust in the early Universe comes from and the most popular theory has been that supernova explosions of massive stars is the only source. Up until now, dust producing carbon stars like the one observed were not thought to have existed in early galaxies.

Gregory Sloan, from Cornell University, said “We haven't seen carbon-rich dust in this primitive an environment before. What this tells us is that carbon stars could have been pumping out dust soon after the first galaxies were born”.

The dust was discovered around the carbon star MAG 29, located 280,000 light years away in a small nearby galaxy called the Sculptor Dwarf. Stars more massive than the Sun end their lives as carbon stars. In our galaxy, carbon stars are a rich source of dust.

The Sculptor Dwarf contains only 4 percent of the carbon and other heavy elements in our own galaxy, making it similar to primitive galaxies seen at the edge of the universe. Those galaxies emitted the light that we now see soon after they and the universe formed.

"While everyone is focused on the questions of how much and what kind of dust supernovae make, they may not have appreciated that carbon stars can make at least some of the dust we are seeing," Sloan said. "The more we can understand the quantity and composition of the dust, the better we can understand how stars and galaxies evolve, both in the early universe and right next door."

"Observing stars such as MAG 29 is not unlike using a time machine", Sloan added, "in which astronomers can catch glimpses of what the universe looked like billions of years ago."

"MAG 29 is exceptionally rich in hydrocarbons, similar to those that are vital components in the chemistry that eventually led to the appearance of life on earth" added Mikako Matsuura from the National University of Japan.

The study also included other scientists in the UK, USA, Japan, Australia and Belgium. It is part of a project led by Albert Zijlstra at the University of Manchester's Jodrell Bank Centre for Astrophysics.

Julia Short | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>